/*! \file gd32e23x_rtc.c \brief RTC driver \version 2019-02-19, V1.0.0, firmware for GD32E23X \version 2020-12-12, V1.1.0, firmware for GD32E23X */ /* Copyright (c) 2020, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32e23x_rtc.h" /*! \brief reset most of the RTC registers \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_deinit(void) { ErrStatus error_status = ERROR; /* RTC_TAMP register is not under write protection */ RTC_TAMP = RTC_REGISTER_RESET; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* reset RTC_CTL register, this can be done without the init mode */ RTC_CTL &= RTC_REGISTER_RESET; /* enter init mode */ error_status = rtc_init_mode_enter(); if(ERROR != error_status){ /* before reset RTC_TIME and RTC_DATE, BPSHAD bit in RTC_CTL should be reset as the condition. in order to read calendar from shadow register, not the real registers being reset */ RTC_TIME = RTC_REGISTER_RESET; RTC_DATE = RTC_DATE_RESET; RTC_PSC = RTC_PSC_RESET; /* reset RTC_STAT register, also exit init mode. at the same time, RTC_STAT_SOPF bit is reset, as the condition to reset RTC_SHIFTCTL register later */ RTC_STAT = RTC_STAT_RESET; /* to write RTC_ALRM0SS register, ALRM0EN bit in RTC_CTL register should be reset as the condition */ RTC_ALRM0TD = RTC_REGISTER_RESET; RTC_ALRM0SS = RTC_REGISTER_RESET; /* reset RTC_SHIFTCTL and RTC_HRFC register, this can be done without the init mode */ RTC_SHIFTCTL = RTC_REGISTER_RESET; RTC_HRFC = RTC_REGISTER_RESET; error_status = rtc_register_sync_wait(); } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief initialize RTC registers \param[in] rtc_initpara_struct: pointer to a rtc_parameter_struct structure which contains parameters for initialization of the rtc peripheral members of the structure and the member values are shown as below: rtc_year: 0x0 - 0x99(BCD format) rtc_month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN, RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC rtc_date: 0x1 - 0x31(BCD format) rtc_day_of_week: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY rtc_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format chose rtc_minute: 0x0 - 0x59(BCD format) rtc_second: 0x0 - 0x59(BCD format) rtc_factor_asyn: 0x0 - 0x7F rtc_factor_syn: 0x0 - 0x7FFF rtc_am_pm: RTC_AM, RTC_PM rtc_display_format: RTC_24HOUR, RTC_12HOUR \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_init(rtc_parameter_struct* rtc_initpara_struct) { ErrStatus error_status = ERROR; uint32_t reg_time = 0x00U, reg_date = 0x00U; reg_date = (DATE_YR(rtc_initpara_struct->rtc_year) | \ DATE_DOW(rtc_initpara_struct->rtc_day_of_week) | \ DATE_MON(rtc_initpara_struct->rtc_month) | \ DATE_DAY(rtc_initpara_struct->rtc_date)); reg_time = (rtc_initpara_struct->rtc_am_pm| \ TIME_HR(rtc_initpara_struct->rtc_hour) | \ TIME_MN(rtc_initpara_struct->rtc_minute) | \ TIME_SC(rtc_initpara_struct->rtc_second)); /* 1st: disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* 2nd: enter init mode */ error_status = rtc_init_mode_enter(); if(ERROR != error_status){ RTC_PSC = (uint32_t)(PSC_FACTOR_A(rtc_initpara_struct->rtc_factor_asyn)| \ PSC_FACTOR_S(rtc_initpara_struct->rtc_factor_syn)); RTC_TIME = (uint32_t)reg_time; RTC_DATE = (uint32_t)reg_date; RTC_CTL &= (uint32_t)(~RTC_CTL_CS); RTC_CTL |= rtc_initpara_struct->rtc_display_format; /* 3rd: exit init mode */ rtc_init_mode_exit(); /* 4th: wait the RSYNF flag to set */ error_status = rtc_register_sync_wait(); } /* 5th: enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief enter RTC init mode \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_init_mode_enter(void) { uint32_t time_index = RTC_INITM_TIMEOUT; uint32_t flag_status = RESET; ErrStatus error_status = ERROR; /* check whether it has been in init mode */ if((uint32_t)RESET == (RTC_STAT & RTC_STAT_INITF)){ RTC_STAT |= RTC_STAT_INITM; /* wait until the INITF flag to be set */ do{ flag_status = RTC_STAT & RTC_STAT_INITF; }while((--time_index > 0x00U) && ((uint32_t)RESET == flag_status)); if((uint32_t)RESET != flag_status){ error_status = SUCCESS; } }else{ error_status = SUCCESS; } return error_status; } /*! \brief exit RTC init mode \param[in] none \param[out] none \retval none */ void rtc_init_mode_exit(void) { RTC_STAT &= (uint32_t)(~RTC_STAT_INITM); } /*! \brief wait until RTC_TIME and RTC_DATE registers are synchronized with APB clock, and the shadow registers are updated \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_register_sync_wait(void) { volatile uint32_t time_index = RTC_RSYNF_TIMEOUT; uint32_t flag_status = RESET; ErrStatus error_status = ERROR; if((uint32_t)RESET == (RTC_CTL & RTC_CTL_BPSHAD)){ /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* firstly clear RSYNF flag */ RTC_STAT &= (uint32_t)(~RTC_STAT_RSYNF); /* wait until RSYNF flag to be set */ do{ flag_status = RTC_STAT & RTC_STAT_RSYNF; }while((--time_index > 0x00U) && ((uint32_t)RESET == flag_status)); if((uint32_t)RESET != flag_status){ error_status = SUCCESS; } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; }else{ error_status = SUCCESS; } return error_status; } /*! \brief get current time and date \param[in] none \param[out] rtc_initpara_struct: pointer to a rtc_parameter_struct structure which contains parameters for initialization of the rtc peripheral members of the structure and the member values are shown as below: rtc_year: 0x0 - 0x99(BCD format) rtc_month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN, RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC rtc_date: 0x1 - 0x31(BCD format) rtc_day_of_week: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY rtc_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format chose rtc_minute: 0x0 - 0x59(BCD format) rtc_second: 0x0 - 0x59(BCD format) rtc_factor_asyn: 0x0 - 0x7F rtc_factor_syn: 0x0 - 0x7FFF rtc_am_pm: RTC_AM, RTC_PM rtc_display_format: RTC_24HOUR, RTC_12HOUR \retval none */ void rtc_current_time_get(rtc_parameter_struct* rtc_initpara_struct) { uint32_t temp_tr = 0x00U, temp_dr = 0x00U, temp_pscr = 0x00U, temp_ctlr = 0x00U; temp_tr = (uint32_t)RTC_TIME; temp_dr = (uint32_t)RTC_DATE; temp_pscr = (uint32_t)RTC_PSC; temp_ctlr = (uint32_t)RTC_CTL; /* get current time and construct rtc_parameter_struct structure */ rtc_initpara_struct->rtc_year = (uint8_t)GET_DATE_YR(temp_dr); rtc_initpara_struct->rtc_month = (uint8_t)GET_DATE_MON(temp_dr); rtc_initpara_struct->rtc_date = (uint8_t)GET_DATE_DAY(temp_dr); rtc_initpara_struct->rtc_day_of_week = (uint8_t)GET_DATE_DOW(temp_dr); rtc_initpara_struct->rtc_hour = (uint8_t)GET_TIME_HR(temp_tr); rtc_initpara_struct->rtc_minute = (uint8_t)GET_TIME_MN(temp_tr); rtc_initpara_struct->rtc_second = (uint8_t)GET_TIME_SC(temp_tr); rtc_initpara_struct->rtc_factor_asyn = (uint16_t)GET_PSC_FACTOR_A(temp_pscr); rtc_initpara_struct->rtc_factor_syn = (uint16_t)GET_PSC_FACTOR_S(temp_pscr); rtc_initpara_struct->rtc_am_pm = (uint32_t)(temp_pscr & RTC_TIME_PM); rtc_initpara_struct->rtc_display_format = (uint32_t)(temp_ctlr & RTC_CTL_CS); } /*! \brief get current subsecond value \param[in] none \param[out] none \retval current subsecond value */ uint32_t rtc_subsecond_get(void) { uint32_t reg = 0x00U; /* if BPSHAD bit is reset, reading RTC_SS will lock RTC_TIME and RTC_DATE automatically */ reg = (uint32_t)RTC_SS; /* read RTC_DATE to unlock the 3 shadow registers */ (void) (RTC_DATE); return reg; } /*! \brief configure RTC alarm \param[in] rtc_alarm_time: pointer to a rtc_alarm_struct structure which contains parameters for RTC alarm configuration members of the structure and the member values are shown as below: rtc_alarm_mask: RTC_ALARM_NONE_MASK, RTC_ALARM_DATE_MASK, RTC_ALARM_HOUR_MASK RTC_ALARM_MINUTE_MASK, RTC_ALARM_SECOND_MASK, RTC_ALARM_ALL_MASK rtc_weekday_or_date: RTC_ALARM_DATE_SELECTED, RTC_ALARM_WEEKDAY_SELECTED rtc_alarm_day: 1) 0x1 - 0x31(BCD format) if RTC_ALARM_DATE_SELECTED is set 2) RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set rtc_alarm_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format rtc_alarm_minute: 0x0 - 0x59(BCD format) rtc_alarm_second: 0x0 - 0x59(BCD format) rtc_am_pm: RTC_AM, RTC_PM \param[out] none \retval none */ void rtc_alarm_config(rtc_alarm_struct* rtc_alarm_time) { uint32_t reg_alrm0td = 0x00U; reg_alrm0td = (rtc_alarm_time->rtc_alarm_mask | \ rtc_alarm_time->rtc_weekday_or_date | \ rtc_alarm_time->rtc_am_pm | \ ALRM0TD_DAY(rtc_alarm_time->rtc_alarm_day) | \ ALRM0TD_HR(rtc_alarm_time->rtc_alarm_hour) | \ ALRM0TD_MN(rtc_alarm_time->rtc_alarm_minute) | \ ALRM0TD_SC(rtc_alarm_time->rtc_alarm_second)); /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_ALRM0TD = (uint32_t)reg_alrm0td; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief configure subsecond of RTC alarm \param[in] mask_subsecond: alarm subsecond mask only one parameter can be selected which is shown as below: \arg RTC_MASKSSC_0_14: mask alarm subsecond configuration \arg RTC_MASKSSC_1_14: mask RTC_ALRM0SS_SSC[14:1], and RTC_ALRM0SS_SSC[0] is to be compared \arg RTC_MASKSSC_2_14: mask RTC_ALRM0SS_SSC[14:2], and RTC_ALRM0SS_SSC[1:0] is to be compared \arg RTC_MASKSSC_3_14: mask RTC_ALRM0SS_SSC[14:3], and RTC_ALRM0SS_SSC[2:0] is to be compared \arg RTC_MASKSSC_4_14: mask RTC_ALRM0SS_SSC[14:4], and RTC_ALRM0SS_SSC[3:0] is to be compared \arg RTC_MASKSSC_5_14: mask RTC_ALRM0SS_SSC[14:5], and RTC_ALRM0SS_SSC[4:0] is to be compared \arg RTC_MASKSSC_6_14: mask RTC_ALRM0SS_SSC[14:6], and RTC_ALRM0SS_SSC[5:0] is to be compared \arg RTC_MASKSSC_7_14: mask RTC_ALRM0SS_SSC[14:7], and RTC_ALRM0SS_SSC[6:0] is to be compared \arg RTC_MASKSSC_8_14: mask RTC_ALRM0SS_SSC[14:8], and RTC_ALRM0SS_SSC[7:0] is to be compared \arg RTC_MASKSSC_9_14: mask RTC_ALRM0SS_SSC[14:9], and RTC_ALRM0SS_SSC[8:0] is to be compared \arg RTC_MASKSSC_10_14: mask RTC_ALRM0SS_SSC[14:10], and RTC_ALRM0SS_SSC[9:0] is to be compared \arg RTC_MASKSSC_11_14: mask RTC_ALRM0SS_SSC[14:11], and RTC_ALRM0SS_SSC[10:0] is to be compared \arg RTC_MASKSSC_12_14: mask RTC_ALRM0SS_SSC[14:12], and RTC_ALRM0SS_SSC[11:0] is to be compared \arg RTC_MASKSSC_13_14: mask RTC_ALRM0SS_SSC[14:13], and RTC_ALRM0SS_SSC[12:0] is to be compared \arg RTC_MASKSSC_14: mask RTC_ALRM0SS_SSC[14], and RTC_ALRM0SS_SSC[13:0] is to be compared \arg RTC_MASKSSC_NONE: mask none, and RTC_ALRM0SS_SSC[14:0] is to be compared \param[in] subsecond: alarm subsecond value(0x000 - 0x7FFF) \param[out] none \retval none */ void rtc_alarm_subsecond_config(uint32_t mask_subsecond, uint32_t subsecond) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_ALRM0SS = mask_subsecond | subsecond; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief enable RTC alarm \param[in] none \param[out] none \retval none */ void rtc_alarm_enable(void) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL |= RTC_CTL_ALRM0EN; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief disable RTC alarm \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_alarm_disable(void) { volatile uint32_t time_index = RTC_ALRM0WF_TIMEOUT; ErrStatus error_status = ERROR; uint32_t flag_status = RESET; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* clear the state of alarm */ RTC_CTL &= (uint32_t)(~RTC_CTL_ALRM0EN); /* wait until ALRM0WF flag to be set after the alarm is disabled */ do{ flag_status = RTC_STAT & RTC_STAT_ALRM0WF; }while((--time_index > 0x00U) && ((uint32_t)RESET == flag_status)); if((uint32_t)RESET != flag_status){ error_status = SUCCESS; } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief get RTC alarm \param[in] none \param[out] rtc_alarm_time: pointer to a rtc_alarm_struct structure which contains parameters for RTC alarm configuration members of the structure and the member values are shown as below: rtc_alarm_mask: RTC_ALARM_NONE_MASK, RTC_ALARM_DATE_MASK, RTC_ALARM_HOUR_MASK RTC_ALARM_MINUTE_MASK, RTC_ALARM_SECOND_MASK, RTC_ALARM_ALL_MASK rtc_weekday_or_date: RTC_ALARM_DATE_SELECTED, RTC_ALARM_WEEKDAY_SELECTED rtc_alarm_day: 1) 0x1 - 0x31(BCD format) if RTC_ALARM_DATE_SELECTED is set 2) RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set rtc_alarm_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format rtc_alarm_minute: 0x0 - 0x59(BCD format) rtc_alarm_second: 0x0 - 0x59(BCD format) rtc_am_pm: RTC_AM, RTC_PM \retval none */ void rtc_alarm_get(rtc_alarm_struct* rtc_alarm_time) { uint32_t reg_alrm0td = 0x00U; /* get the value of RTC_ALRM0TD register */ reg_alrm0td = RTC_ALRM0TD; /* get alarm parameters and construct the rtc_alarm_struct structure */ rtc_alarm_time->rtc_alarm_mask = reg_alrm0td & RTC_ALARM_ALL_MASK; rtc_alarm_time->rtc_am_pm = (uint32_t)(reg_alrm0td & RTC_ALRM0TD_PM); rtc_alarm_time->rtc_weekday_or_date = (uint32_t)(reg_alrm0td & RTC_ALRM0TD_DOWS); rtc_alarm_time->rtc_alarm_day = (uint8_t)GET_ALRM0TD_DAY(reg_alrm0td); rtc_alarm_time->rtc_alarm_hour = (uint8_t)GET_ALRM0TD_HR(reg_alrm0td); rtc_alarm_time->rtc_alarm_minute = (uint8_t)GET_ALRM0TD_MN(reg_alrm0td); rtc_alarm_time->rtc_alarm_second = (uint8_t)GET_ALRM0TD_SC(reg_alrm0td); } /*! \brief get RTC alarm subsecond \param[in] none \param[out] none \retval RTC alarm subsecond value */ uint32_t rtc_alarm_subsecond_get(void) { return ((uint32_t)(RTC_ALRM0SS & RTC_ALRM0SS_SSC)); } /*! \brief enable RTC time-stamp \param[in] edge: specify which edge to detect of time-stamp only one parameter can be selected which is shown as below: \arg RTC_TIMESTAMP_RISING_EDGE: rising edge is valid event edge for timestamp event \arg RTC_TIMESTAMP_FALLING_EDGE: falling edge is valid event edge for timestamp event \param[out] none \retval none */ void rtc_timestamp_enable(uint32_t edge) { uint32_t reg_ctl = 0x00U; /* clear the bits to be configured in RTC_CTL */ reg_ctl = (uint32_t)(RTC_CTL & (uint32_t)(~(RTC_CTL_TSEG | RTC_CTL_TSEN))); /* new configuration */ reg_ctl |= (uint32_t)(edge | RTC_CTL_TSEN); /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL = (uint32_t)reg_ctl; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief disable RTC time-stamp \param[in] none \param[out] none \retval none */ void rtc_timestamp_disable(void) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* clear the TSEN bit */ RTC_CTL &= (uint32_t)(~ RTC_CTL_TSEN); /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief get RTC timestamp time and date \param[in] none \param[out] rtc_timestamp: pointer to a rtc_timestamp_struct structure which contains parameters for RTC time-stamp configuration members of the structure and the member values are shown as below: rtc_timestamp_month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN, RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC rtc_timestamp_date: 0x1 - 0x31(BCD format) rtc_timestamp_day: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set rtc_timestamp_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format rtc_timestamp_minute: 0x0 - 0x59(BCD format) rtc_timestamp_second: 0x0 - 0x59(BCD format) rtc_am_pm: RTC_AM, RTC_PM \retval none */ void rtc_timestamp_get(rtc_timestamp_struct* rtc_timestamp) { uint32_t temp_tts = 0x00U, temp_dts = 0x00U; /* get the value of time_stamp registers */ temp_tts = (uint32_t)RTC_TTS; temp_dts = (uint32_t)RTC_DTS; /* get timestamp time and construct the rtc_timestamp_struct structure */ rtc_timestamp->rtc_am_pm = (uint32_t)(temp_tts & RTC_TTS_PM); rtc_timestamp->rtc_timestamp_month = (uint8_t)GET_DTS_MON(temp_dts); rtc_timestamp->rtc_timestamp_date = (uint8_t)GET_DTS_DAY(temp_dts); rtc_timestamp->rtc_timestamp_day = (uint8_t)GET_DTS_DOW(temp_dts); rtc_timestamp->rtc_timestamp_hour = (uint8_t)GET_TTS_HR(temp_tts); rtc_timestamp->rtc_timestamp_minute = (uint8_t)GET_TTS_MN(temp_tts); rtc_timestamp->rtc_timestamp_second = (uint8_t)GET_TTS_SC(temp_tts); } /*! \brief get RTC time-stamp subsecond \param[in] none \param[out] none \retval RTC time-stamp subsecond value */ uint32_t rtc_timestamp_subsecond_get(void) { return ((uint32_t)RTC_SSTS); } /*! \brief enable RTC tamper \param[in] rtc_tamper: pointer to a rtc_tamper_struct structure which contains parameters for RTC tamper configuration members of the structure and the member values are shown as below: rtc_tamper_source: RTC_TAMPER0, RTC_TAMPER1 rtc_tamper_trigger: RTC_TAMPER_TRIGGER_EDGE_RISING, RTC_TAMPER_TRIGGER_EDGE_FALLING RTC_TAMPER_TRIGGER_LEVEL_LOW, RTC_TAMPER_TRIGGER_LEVEL_HIGH rtc_tamper_filter: RTC_FLT_EDGE, RTC_FLT_2S, RTC_FLT_4S, RTC_FLT_8S rtc_tamper_sample_frequency: RTC_FREQ_DIV32768, RTC_FREQ_DIV16384, RTC_FREQ_DIV8192, RTC_FREQ_DIV4096, RTC_FREQ_DIV2048, RTC_FREQ_DIV1024, RTC_FREQ_DIV512, RTC_FREQ_DIV256 rtc_tamper_precharge_enable: DISABLE, ENABLE rtc_tamper_precharge_time: RTC_PRCH_1C, RTC_PRCH_2C, RTC_PRCH_4C, RTC_PRCH_8C rtc_tamper_with_timestamp: DISABLE, ENABLE \param[out] none \retval none */ void rtc_tamper_enable(rtc_tamper_struct* rtc_tamper) { /* disable tamper */ RTC_TAMP &= (uint32_t)~(rtc_tamper->rtc_tamper_source); /* tamper filter must be used when the tamper source is voltage level detection */ RTC_TAMP &= (uint32_t)~RTC_TAMP_FLT; /* the tamper source is voltage level detection */ if(rtc_tamper->rtc_tamper_filter != RTC_FLT_EDGE ){ RTC_TAMP &= (uint32_t)~(RTC_TAMP_DISPU | RTC_TAMP_PRCH | RTC_TAMP_FREQ | RTC_TAMP_FLT); /* check if the tamper pin need precharge, if need, then configure the precharge time */ if(DISABLE == rtc_tamper->rtc_tamper_precharge_enable){ RTC_TAMP |= (uint32_t)RTC_TAMP_DISPU; }else{ RTC_TAMP |= (uint32_t)(rtc_tamper->rtc_tamper_precharge_time); } RTC_TAMP |= (uint32_t)(rtc_tamper->rtc_tamper_sample_frequency); RTC_TAMP |= (uint32_t)(rtc_tamper->rtc_tamper_filter); } RTC_TAMP &= (uint32_t)~RTC_TAMP_TPTS; if(DISABLE != rtc_tamper->rtc_tamper_with_timestamp){ /* the tamper event also cause a time-stamp event */ RTC_TAMP |= (uint32_t)RTC_TAMP_TPTS; } /* configure the tamper trigger */ RTC_TAMP &= ((uint32_t)~((rtc_tamper->rtc_tamper_source) << RTC_TAMPER_TRIGGER_POS)); if(RTC_TAMPER_TRIGGER_EDGE_RISING != rtc_tamper->rtc_tamper_trigger){ RTC_TAMP |= (uint32_t)((rtc_tamper->rtc_tamper_source)<< RTC_TAMPER_TRIGGER_POS); } /* enable tamper */ RTC_TAMP |= (uint32_t)(rtc_tamper->rtc_tamper_source); } /*! \brief disable RTC tamper \param[in] source: specify which tamper source to be disabled only one parameter can be selected which is shown as below: \arg RTC_TAMPER0 \arg RTC_TAMPER1 \param[out] none \retval none */ void rtc_tamper_disable(uint32_t source) { /* disable tamper */ RTC_TAMP &= (uint32_t)~source; } /*! \brief enable specified RTC interrupt \param[in] interrupt: specify which interrupt source to be enabled only one parameter can be selected which is shown as below: \arg RTC_INT_TIMESTAMP: timestamp interrupt, only available for GD32E230 \arg RTC_INT_ALARM: alarm interrupt \arg RTC_INT_TAMP: tamp interrupt \param[out] none \retval none */ void rtc_interrupt_enable(uint32_t interrupt) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* enable the interrupts in RTC_CTL register */ RTC_CTL |= (uint32_t)(interrupt & (uint32_t)~RTC_TAMP_TPIE); /* enable the interrupts in RTC_TAMP register */ RTC_TAMP |= (uint32_t)(interrupt & RTC_TAMP_TPIE); /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief disble specified RTC interrupt \param[in] interrupt: specify which interrupt source to be disabled only one parameter can be selected which is shown as below: \arg RTC_INT_TIMESTAMP: timestamp interrupt, only available for GD32E230 \arg RTC_INT_ALARM: alarm interrupt \arg RTC_INT_TAMP: tamp interrupt \param[out] none \retval none */ void rtc_interrupt_disable(uint32_t interrupt) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* disable the interrupts in RTC_CTL register */ RTC_CTL &= (uint32_t)~(interrupt & (uint32_t)~RTC_TAMP_TPIE); /* disable the interrupts in RTC_TAMP register */ RTC_TAMP &= (uint32_t)~(interrupt & RTC_TAMP_TPIE); /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief check specified flag \param[in] flag: specify which flag to check only one parameter can be selected which is shown as below: \arg RTC_FLAG_RECALIBRATION: recalibration pending flag \arg RTC_FLAG_TAMP1: tamper 1 event flag \arg RTC_FLAG_TAMP0: tamper 0 event flag, only available for GD32E230 \arg RTC_FLAG_TIMESTAMP_OVERFLOW: time-stamp overflow event flag, only available for GD32E230 \arg RTC_FLAG_TIMESTAMP: time-stamp event flag, only available for GD32E230 \arg RTC_FLAG_ALARM0: alarm event flag \arg RTC_FLAG_INIT: init mode event flag \arg RTC_FLAG_RSYN: time and date registers synchronized event flag \arg RTC_FLAG_YCM: year parameter configured event flag \arg RTC_FLAG_SHIFT: shift operation pending flag \arg RTC_FLAG_ALARM0_WRITTEN: alarm writen available flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus rtc_flag_get(uint32_t flag) { FlagStatus flag_state = RESET; if((uint32_t)RESET != (RTC_STAT & flag)){ flag_state = SET; } return flag_state; } /*! \brief clear specified flag \param[in] flag: specify which flag to clear only one parameter can be selected which is shown as below: \arg RTC_FLAG_TAMP1: tamper 1 event flag \arg RTC_FLAG_TAMP0: tamper 0 event flag, only available for GD32E230 \arg RTC_FLAG_TIMESTAMP_OVERFLOW: time-stamp overflow event flag, only available for GD32E230 \arg RTC_FLAG_TIMESTAMP: time-stamp event flag, only available for GD32E230 \arg RTC_FLAG_ALARM0: alarm event flag \arg RTC_FLAG_RSYN: time and date registers synchronized event flag \param[out] none \retval none */ void rtc_flag_clear(uint32_t flag) { RTC_STAT &= (uint32_t)(~flag); } /*! \brief configure rtc alternate output source \param[in] source: specify signal to output only one parameter can be selected which is shown as below: \arg RTC_CALIBRATION_512HZ: when the LXTAL freqency is 32768Hz and the RTC_PSC is the default value, output 512Hz signal \arg RTC_CALIBRATION_1HZ: when the LXTAL freqency is 32768Hz and the RTC_PSC is the default value, output 512Hz signal \arg RTC_ALARM_HIGH: when the alarm flag is set, the output pin is high \arg RTC_ALARM_LOW: when the Alarm flag is set, the output pin is low \param[in] mode: specify the output pin (PC13) mode when output alarm signal only one parameter can be selected which is shown as below: \arg RTC_ALARM_OUTPUT_OD: open drain mode \arg RTC_ALARM_OUTPUT_PP: push pull mode \param[out] none \retval none */ void rtc_alter_output_config(uint32_t source, uint32_t mode) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL &= (uint32_t)~(RTC_CTL_COEN | RTC_CTL_OS | RTC_CTL_OPOL | RTC_CTL_COS); RTC_CTL |= (uint32_t)(source); /* alarm output */ if((uint32_t)RESET != (source & RTC_OS_ENABLE)){ RTC_TAMP &= (uint32_t)~(RTC_TAMP_PC13VAL); RTC_TAMP |= (uint32_t)(mode); } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief configure RTC calibration register \param[in] window: select calibration window only one parameter can be selected which is shown as below: \arg RTC_CALIBRATION_WINDOW_32S: 2exp20 RTCCLK cycles, 32s if RTCCLK = 32768 Hz \arg RTC_CALIBRATION_WINDOW_16S: 2exp19 RTCCLK cycles, 16s if RTCCLK = 32768 Hz \arg RTC_CALIBRATION_WINDOW_8S: 2exp18 RTCCLK cycles, 8s if RTCCLK = 32768 Hz \param[in] plus: add RTC clock or not only one parameter can be selected which is shown as below: \arg RTC_CALIBRATION_PLUS_SET: add one RTC clock every 2048 rtc clock \arg RTC_CALIBRATION_PLUS_RESET: no effect \param[in] minus: the RTC clock to minus during the calibration window(0x0 - 0x1FF) \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_calibration_config(uint32_t window, uint32_t plus, uint32_t minus) { uint32_t time_index = RTC_HRFC_TIMEOUT; ErrStatus error_status = ERROR; uint32_t flag_status = RESET; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* check if a calibration operation is ongoing */ do{ flag_status = RTC_STAT & RTC_STAT_SCPF; }while((--time_index > 0x00U) && ((uint32_t)RESET != flag_status)); if((uint32_t)RESET == flag_status){ RTC_HRFC = (uint32_t)(window | plus | HRFC_CMSK(minus)); error_status = SUCCESS; } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief adjust the daylight saving time by adding or substracting one hour from the current time \param[in] operation: hour ajustment operation only one parameter can be selected which is shown as below: \arg RTC_CTL_A1H: add one hour \arg RTC_CTL_S1H: substract one hour \param[out] none \retval none */ void rtc_hour_adjust(uint32_t operation) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL |= (uint32_t)(operation); /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief adjust RTC second or subsecond value of current time \param[in] add: add 1s to current time or not only one parameter can be selected which is shown as below: \arg RTC_SHIFT_ADD1S_RESET: no effect \arg RTC_SHIFT_ADD1S_SET: add 1s to current time \param[in] minus: number of subsecond to minus from current time(0x0 - 0x7FFF) \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_second_adjust(uint32_t add, uint32_t minus) { uint32_t time_index = RTC_SHIFTCTL_TIMEOUT; ErrStatus error_status = ERROR; uint32_t flag_status = RESET; uint32_t temp=0U; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* check if a shift operation is ongoing */ do{ flag_status = RTC_STAT & RTC_STAT_SOPF; }while((--time_index > 0x00U) && ((uint32_t)RESET != flag_status)); temp = RTC_CTL & RTC_CTL_REFEN; /* check if the function of reference clock detection is disabled */ if(((uint32_t)RESET == flag_status) && (RESET == temp)){ RTC_SHIFTCTL = (uint32_t)(add | SHIFTCTL_SFS(minus)); error_status = rtc_register_sync_wait(); } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief enable RTC bypass shadow registers function \param[in] none \param[out] none \retval none */ void rtc_bypass_shadow_enable(void) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL |= (uint8_t)RTC_CTL_BPSHAD; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief disable RTC bypass shadow registers function \param[in] none \param[out] none \retval none */ void rtc_bypass_shadow_disable(void) { /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; RTC_CTL &= (uint8_t)~RTC_CTL_BPSHAD; /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; } /*! \brief enable RTC reference clock detection function \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_refclock_detection_enable(void) { ErrStatus error_status = ERROR; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* enter init mode */ error_status = rtc_init_mode_enter(); if(ERROR != error_status){ RTC_CTL |= (uint32_t)RTC_CTL_REFEN; /* exit init mode */ rtc_init_mode_exit(); } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; } /*! \brief disable RTC reference clock detection function \param[in] none \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus rtc_refclock_detection_disable(void) { ErrStatus error_status = ERROR; /* disable the write protection */ RTC_WPK = RTC_UNLOCK_KEY1; RTC_WPK = RTC_UNLOCK_KEY2; /* enter init mode */ error_status = rtc_init_mode_enter(); if(ERROR != error_status){ RTC_CTL &= (uint32_t)~RTC_CTL_REFEN; /* exit init mode */ rtc_init_mode_exit(); } /* enable the write protection */ RTC_WPK = RTC_LOCK_KEY; return error_status; }