/*! \file gd32e23x_spi.c \brief SPI driver \version 2019-02-19, V1.0.0, firmware for GD32E23x \version 2020-12-12, V1.1.0, firmware for GD32E23x */ /* Copyright (c) 2020, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32e23x_spi.h" /* SPI/I2S parameter initialization mask */ #define SPI_INIT_MASK ((uint32_t)0x00003040U) /*!< SPI0 parameter initialization mask */ #define SPI_FIFO_INIT_MASK1 ((uint32_t)0x00003840U) /*!< SPI1 parameter initialization mask1 */ #define SPI_FIFO_INIT_MASK2 ((uint32_t)0x0000F0FFU) /*!< SPI1 parameter initialization mask2*/ #define I2S_INIT_MASK ((uint32_t)0x0000F047U) /*!< I2S parameter initialization mask */ #define SPI_FRAMESIZE_MASK ((uint32_t)0x00000800U) /*!< SPI0 frame size mask */ #define SPI_BYTEN_MASK ((uint32_t)0x00001000U) /*!< SPI1 access to FIFO mask */ #define SPI_TXLVL_EMPTY_MASK ((uint32_t)0x00001800U) /*!< SPI1 TXFIFO empty mask */ #define SPI_RXLVL_EMPTY_MASK ((uint32_t)0x00000600U) /*!< SPI1 RXFIFO empty mask */ /* I2S clock source selection, multiplication and division mask */ #define SPI_I2SPSC_RESET ((uint32_t)0x00000002U) /*!< I2S clock prescaler register reset value */ /*! \brief reset SPI and I2S \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_i2s_deinit(uint32_t spi_periph) { switch(spi_periph) { case SPI0: /* reset SPI0 and I2S0 */ rcu_periph_reset_enable(RCU_SPI0RST); rcu_periph_reset_disable(RCU_SPI0RST); break; case SPI1: /* reset SPI1 */ rcu_periph_reset_enable(RCU_SPI1RST); rcu_periph_reset_disable(RCU_SPI1RST); break; default : break; } } /*! \brief initialize the parameters of SPI structure with the default values \param[in] none \param[out] spi_parameter_struct: the initialized structure spi_parameter_struct pointer \retval none */ void spi_struct_para_init(spi_parameter_struct *spi_struct) { /* configure the SPI structure with the default values */ spi_struct->device_mode = SPI_SLAVE; spi_struct->trans_mode = SPI_TRANSMODE_FULLDUPLEX; spi_struct->frame_size = SPI_FRAMESIZE_8BIT; spi_struct->nss = SPI_NSS_HARD; spi_struct->endian = SPI_ENDIAN_MSB; spi_struct->clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE; spi_struct->prescale = SPI_PSC_2; } /*! \brief initialize SPI parameters \param[in] spi_periph: SPIx(x=0,1) \param[in] spi_struct: SPI parameter initialization stuct members of the structure and the member values are shown as below: device_mode: SPI_MASTER, SPI_SLAVE trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY, SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT frame_size: SPI_FRAMESIZE_4BIT, SPI_FRAMESIZE_5BIT SPI_FRAMESIZE_6BIT, SPI_FRAMESIZE_7BIT SPI_FRAMESIZE_8BIT, SPI_FRAMESIZE_9BIT SPI_FRAMESIZE_10BIT, SPI_FRAMESIZE_11BIT SPI_FRAMESIZE_12BIT, SPI_FRAMESIZE_13BIT SPI_FRAMESIZE_14BIT, SPI_FRAMESIZE_15BIT SPI_FRAMESIZE_16BIT nss: SPI_NSS_SOFT, SPI_NSS_HARD endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256) \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus spi_init(uint32_t spi_periph, spi_parameter_struct *spi_struct) { uint32_t reg1 = 0, reg2 = 0U, reg3 = 0U; reg1 = SPI_CTL0(spi_periph); reg1 &= SPI_INIT_MASK; reg2 = SPI_CTL0(spi_periph); reg2 &= SPI_FIFO_INIT_MASK1; reg3 = SPI_CTL1(spi_periph); reg3 &= SPI_FIFO_INIT_MASK2; if(SPI0 == spi_periph) { /* select SPI as master or slave */ reg1 |= spi_struct->device_mode; /* select SPI transfer mode */ reg1 |= spi_struct->trans_mode; /* select SPI NSS use hardware or software */ reg1 |= spi_struct->nss; /* select SPI LSB or MSB */ reg1 |= spi_struct->endian; /* select SPI polarity and phase */ reg1 |= spi_struct->clock_polarity_phase; /* select SPI prescaler to adjust transmit speed */ reg1 |= spi_struct->prescale; /* select SPI frame size */ /* check SPI0 frame size is 8bits/16bits or not*/ if((SPI_FRAMESIZE_8BIT != spi_struct->frame_size) && (SPI_FRAMESIZE_16BIT != spi_struct->frame_size)) { return ERROR; } else { reg1 |= (spi_struct->frame_size & SPI_FRAMESIZE_MASK); } /* write to SPI_CTL0 register */ SPI_CTL0(spi_periph) = (uint32_t)reg1; } else { /* select SPI as master or slave */ reg2 |= spi_struct->device_mode; /* select SPI transfer mode */ reg2 |= spi_struct->trans_mode; /* select SPI NSS use hardware or software */ reg2 |= spi_struct->nss; /* select SPI LSB or MSB */ reg2 |= spi_struct->endian; /* select SPI polarity and phase */ reg2 |= spi_struct->clock_polarity_phase; /* select SPI prescaler to adjust transmit speed */ reg2 |= spi_struct->prescale; /* write to SPI_CTL0 register */ SPI_CTL0(spi_periph) = (uint32_t)reg2; /* select SPI data size */ reg3 |= spi_struct->frame_size; /* write to SPI_CTL0 register */ SPI_CTL1(spi_periph) = (uint32_t)reg3; } /* select SPI mode */ SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL); return SUCCESS; } /*! \brief enable SPI \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_enable(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN; } /*! \brief disable SPI \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_disable(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN); } /*! \brief initialize I2S parameters \param[in] spi_periph: SPIx(x=0) \param[in] mode: I2S operation mode only one parameter can be selected which is shown as below: \arg I2S_MODE_SLAVETX: I2S slave transmit mode \arg I2S_MODE_SLAVERX: I2S slave receive mode \arg I2S_MODE_MASTERTX: I2S master transmit mode \arg I2S_MODE_MASTERRX: I2S master receive mode \param[in] standard: I2S standard only one parameter can be selected which is shown as below: \arg I2S_STD_PHILLIPS: I2S phillips standard \arg I2S_STD_MSB: I2S MSB standard \arg I2S_STD_LSB: I2S LSB standard \arg I2S_STD_PCMSHORT: I2S PCM short standard \arg I2S_STD_PCMLONG: I2S PCM long standard \param[in] ckpl: I2S idle state clock polarity only one parameter can be selected which is shown as below: \arg I2S_CKPL_LOW: I2S clock polarity low level \arg I2S_CKPL_HIGH: I2S clock polarity high level \param[out] none \retval none */ void i2s_init(uint32_t spi_periph, uint32_t mode, uint32_t standard, uint32_t ckpl) { uint32_t reg = 0U; reg = SPI_I2SCTL(spi_periph); reg &= I2S_INIT_MASK; /* enable I2S mode */ reg |= (uint32_t)SPI_I2SCTL_I2SSEL; /* select I2S mode */ reg |= (uint32_t)mode; /* select I2S standard */ reg |= (uint32_t)standard; /* select I2S polarity */ reg |= (uint32_t)ckpl; /* write to SPI_I2SCTL register */ SPI_I2SCTL(spi_periph) = (uint32_t)reg; } /*! \brief configure I2S prescaler \param[in] spi_periph: SPIx(x=0) \param[in] audiosample: I2S audio sample rate only one parameter can be selected which is shown as below: \arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz \arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz \arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz \arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz \arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz \arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz \arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz \arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz \arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz \param[in] frameformat: I2S data length and channel length only one parameter can be selected which is shown as below: \arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit \arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit \arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit \arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit \param[in] mckout: I2S master clock output only one parameter can be selected which is shown as below: \arg I2S_MCKOUT_ENABLE: enable I2S master clock output \arg I2S_MCKOUT_DISABLE: disable 2S master clock output \param[out] none \retval none */ void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t frameformat, uint32_t mckout) { uint32_t i2sdiv = 2U, i2sof = 0U; uint32_t clks = 0U; uint32_t i2sclock = 0U; /* deinitialize SPI_I2SPSC register */ SPI_I2SPSC(spi_periph) = SPI_I2SPSC_RESET; /* get system clock */ i2sclock = rcu_clock_freq_get(CK_SYS); /* configure the prescaler depending on the mclk output state, the frame format and audio sample rate */ if(I2S_MCKOUT_ENABLE == mckout) { clks = (uint32_t)(((i2sclock / 256U) * 10U) / audiosample); } else { if(I2S_FRAMEFORMAT_DT16B_CH16B == frameformat) { clks = (uint32_t)(((i2sclock / 32U) * 10U) / audiosample); } else { clks = (uint32_t)(((i2sclock / 64U) * 10U) / audiosample); } } /* remove the floating point */ clks = (clks + 5U) / 10U; i2sof = (clks & 0x00000001U); i2sdiv = ((clks - i2sof) / 2U); i2sof = (i2sof << 8U); /* set the default values */ if((i2sdiv < 2U) || (i2sdiv > 255U)) { i2sdiv = 2U; i2sof = 0U; } /* configure SPI_I2SPSC */ SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | mckout); /* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */ SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN | SPI_I2SCTL_CHLEN)); /* configure data frame format */ SPI_I2SCTL(spi_periph) |= (uint32_t)frameformat; } /*! \brief enable I2S \param[in] spi_periph: SPIx(x=0) \param[out] none \retval none */ void i2s_enable(uint32_t spi_periph) { SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN; } /*! \brief disable I2S \param[in] spi_periph: SPIx(x=0) \param[out] none \retval none */ void i2s_disable(uint32_t spi_periph) { SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN); } /*! \brief enable SPI NSS output \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nss_output_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV; } /*! \brief disable SPI NSS output \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nss_output_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV); } /*! \brief SPI NSS pin high level in software mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nss_internal_high(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS; } /*! \brief SPI NSS pin low level in software mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nss_internal_low(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS); } /*! \brief enable SPI DMA send or receive \param[in] spi_periph: SPIx(x=0,1) \param[in] dma: SPI DMA mode only one parameter can be selected which is shown as below: \arg SPI_DMA_TRANSMIT: SPI transmit data using DMA \arg SPI_DMA_RECEIVE: SPI receive data using DMA \param[out] none \retval none */ void spi_dma_enable(uint32_t spi_periph, uint8_t dma) { if(SPI_DMA_TRANSMIT == dma) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN; } else { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN; } } /*! \brief disable SPI DMA send or receive \param[in] spi_periph: SPIx(x=0,1) \param[in] dma: SPI DMA mode only one parameter can be selected which is shown as below: \arg SPI_DMA_TRANSMIT: SPI transmit data using DMA \arg SPI_DMA_RECEIVE: SPI receive data using DMA \param[out] none \retval none */ void spi_dma_disable(uint32_t spi_periph, uint8_t dma) { if(SPI_DMA_TRANSMIT == dma) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN); } else { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN); } } /*! \brief configure SPI total number of data to be transmitted by DMA is odd or not \param[in] spi_periph: SPIx(x=1) \param[in] odd: odd bytes in TX DMA channel only one parameter can be selected which is shown as below: \arg SPI_TXDMA_EVEN: number of byte in TX DMA channel is even \arg SPI_TXDMA_ODD: number of byte in TX DMA channel is odd \param[out] none \retval none */ void spi_transmit_odd_config(uint32_t spi_periph, uint16_t odd) { /* clear SPI_CTL1_TXDMA_ODD bit */ SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TXDMA_ODD); /* configure SPI_CTL1_TXDMA_ODD bit */ SPI_CTL1(spi_periph) |= (uint32_t)odd; } /*! \brief configure SPI total number of data to be received by DMA is odd or not \param[in] spi_periph: SPIx(x=1) \param[in] odd: odd bytes in RX DMA channel only one parameter can be selected which is shown as below: \arg SPI_RXDMA_EVEN: number of bytes in RX DMA channel is even \arg SPI_RXDMA_ODD: number of bytes in RX DMA channel is odd \param[out] none \retval none */ void spi_receive_odd_config(uint32_t spi_periph, uint16_t odd) { /* clear SPI_CTL1_RXDMA_ODD bit */ SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RXDMA_ODD); /* configure SPI_CTL1_RXDMA_ODD bit */ SPI_CTL1(spi_periph) |= (uint32_t)odd; } /*! \brief configure SPI data frame format \param[in] spi_periph: SPIx(x=0,1) \param[in] frame_format: SPI frame size only one parameter can be selected which is shown as below: \arg SPI_FRAMESIZE_xBIT(x=4,5..16, for SPI1, x=8,16, for SPI0):SPI frame size is x bits \param[out] none \retval ErrStatus: ERROR or SUCCESS */ ErrStatus spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format) { uint32_t reg; if(SPI0 == spi_periph) { /* check SPI0 frame size is 8bits/16bits or not*/ if((SPI_FRAMESIZE_8BIT != frame_format) && (SPI_FRAMESIZE_16BIT != frame_format)) { return ERROR; } else { /* clear SPI_CTL0_FF16 bit */ SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16); /* configure SPI_CTL0_FF16 bit */ SPI_CTL0(spi_periph) |= ((uint32_t)frame_format & SPI_FRAMESIZE_MASK); } } else { reg = SPI_CTL1(spi_periph); /* clear SPI_CTL1_DZ bits */ reg &= (uint32_t)(~SPI_CTL1_DZ); reg |= (uint32_t)frame_format; /* configure SPI_CTL1_DZ bits */ SPI_CTL1(spi_periph) = reg; } return SUCCESS; } /*! \brief configure SPI access size to FIFO(8-bit or 16-bit) \param[in] spi_periph: SPIx(x=1) \param[in] fifo_access_size: byte access enable only one parameter can be selected which is shown as below: \arg SPI_HALFWORD_ACCESS: half-word access to FIFO \arg SPI_BYTE_ACCESS: byte access to FIFO \param[out] none \retval none */ void spi_fifo_access_size_config(uint32_t spi_periph, uint16_t fifo_access_size) { /* clear SPI_CTL1_BYTEN bit */ SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_BYTEN); /* confige SPI_CTL1_BYTEN bit */ SPI_CTL1(spi_periph) |= (uint32_t)fifo_access_size; } /*! \brief configure SPI bidirectional transfer direction \param[in] spi_periph: SPIx(x=0,1) \param[in] transfer_direction: SPI transfer direction only one parameter can be selected which is shown as below: \arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode \arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode \param[out] none \retval none */ void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction) { if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction) { /* set the transmit-only mode */ SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT; } else { /* set the receive-only mode */ SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE; } } /*! \brief SPI transmit data \param[in] spi_periph: SPIx(x=0,1) \param[in] data: 16-bit data \param[out] none \retval none */ void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data) { uint32_t reg, byten; if(SPI0 == spi_periph) { SPI_DATA(spi_periph) = (uint32_t)data; } else { /* get the access size to FIFO */ byten = SPI_CTL1(spi_periph) & SPI_BYTEN_MASK; if(RESET != byten) { reg = spi_periph + 0x0CU; *(uint8_t *)(reg) = (uint8_t)data; } else { SPI_DATA(spi_periph) = (uint16_t)data; } } } /*! \brief SPI receive data \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval 16-bit data */ uint16_t spi_i2s_data_receive(uint32_t spi_periph) { uint32_t reg, byten; if(SPI0 == spi_periph) { return ((uint16_t)SPI_DATA(spi_periph)); } else { /* get the access size to FIFO */ byten = SPI_CTL1(spi_periph) & SPI_BYTEN_MASK; if(RESET != byten) { reg = spi_periph + 0x0CU; return (uint16_t)(*(uint8_t *)(reg)); } else { return ((uint16_t)SPI_DATA(spi_periph)); } } } /*! \brief set SPI CRC polynomial \param[in] spi_periph: SPIx(x=0,1) \param[in] crc_poly: CRC polynomial value \param[out] none \retval none */ void spi_crc_polynomial_set(uint32_t spi_periph, uint16_t crc_poly) { /* enable SPI CRC */ SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN; /* set SPI CRC polynomial */ SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly; } /*! \brief get SPI CRC polynomial \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval 16-bit CRC polynomial */ uint16_t spi_crc_polynomial_get(uint32_t spi_periph) { return ((uint16_t)SPI_CRCPOLY(spi_periph)); } /*! \brief set CRC length \param[in] spi_periph: SPIx(x=1) \param[in] crc_length: CRC length only one parameter can be selected which is shown as below: \arg SPI_CRC_8BIT: CRC length is 8 bits \arg SPI_CRC_16BIT: CRC length is 16 bits \param[out] none \retval none */ void spi_crc_length_set(uint32_t spi_periph, uint16_t crc_length) { /* clear SPI_CTL0_CRCL bit */ SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCL); /* confige SPI_CTL0_CRCL bit */ SPI_CTL0(spi_periph) |= (uint32_t)crc_length; } /*! \brief turn on CRC function \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_crc_on(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN; } /*! \brief turn off CRC function \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_crc_off(uint32_t spi_periph) { SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN); } /*! \brief SPI next data is CRC value \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_crc_next(uint32_t spi_periph) { SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT; } /*! \brief get SPI CRC send value or receive value \param[in] spi_periph: SPIx(x=0,1) \param[in] crc: SPI crc value only one parameter can be selected which is shown as below: \arg SPI_CRC_TX: get transmit crc value \arg SPI_CRC_RX: get receive crc value \param[out] none \retval 16-bit CRC value */ uint16_t spi_crc_get(uint32_t spi_periph, uint8_t crc) { if(SPI_CRC_TX == crc) { return ((uint16_t)(SPI_TCRC(spi_periph))); } else { return ((uint16_t)(SPI_RCRC(spi_periph))); } } /*! \brief enable SPI TI mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_ti_mode_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD; } /*! \brief disable SPI TI mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_ti_mode_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD); } /*! \brief enable SPI NSS pulse mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nssp_mode_enable(uint32_t spi_periph) { SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSP; } /*! \brief disable SPI NSS pulse mode \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_nssp_mode_disable(uint32_t spi_periph) { SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSP); } /*! \brief enable quad wire SPI \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD; } /*! \brief disable quad wire SPI \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_disable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD); } /*! \brief enable quad wire SPI write \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_write_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD); } /*! \brief enable quad wire SPI read \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_read_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD; } /*! \brief enable SPI_IO2 and SPI_IO3 pin output \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_io23_output_enable(uint32_t spi_periph) { SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV; } /*! \brief disable SPI_IO2 and SPI_IO3 pin output \param[in] spi_periph: SPIx(x=1) \param[out] none \retval none */ void spi_quad_io23_output_disable(uint32_t spi_periph) { SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV); } /*! \brief get SPI and I2S flag status \param[in] spi_periph: SPIx(x=0,1) \param[in] flag: SPI/I2S flag status only one parameter can be selected which are shown as below: \arg SPI_FLAG_TBE: transmit buffer empty flag \arg SPI_FLAG_RBNE: receive buffer not empty flag \arg SPI_FLAG_TRANS: transmit on-going flag \arg SPI_FLAG_RXORERR: receive overrun error flag \arg SPI_FLAG_CONFERR: mode config error flag \arg SPI_FLAG_CRCERR: CRC error flag \arg SPI_FLAG_FERR: SPI format error interrupt flag \arg I2S_FLAG_TBE: transmit buffer empty flag \arg I2S_FLAG_RBNE: receive buffer not empty flag \arg I2S_FLAG_TRANS: transmit on-going flag \arg I2S_FLAG_RXORERR: overrun error flag \arg I2S_FLAG_TXURERR: underrun error flag \arg I2S_FLAG_CH: channel side flag \arg I2S_FLAG_FERR: I2S format error interrupt flag only for SPI1: \arg SPI_TXLVL_EMPTY: SPI TXFIFO is empty \arg SPI_TXLVL_QUARTER_FULL: SPI TXFIFO is a quarter of full \arg SPI_TXLVL_HAlF_FULL: SPI TXFIFO is a half of full \arg SPI_TXLVL_FULL: SPI TXFIFO is full \arg SPI_RXLVL_EMPTY: SPI RXFIFO is empty \arg SPI_RXLVL_QUARTER_FULL: SPI RXFIFO is a quarter of full \arg SPI_RXLVL_HAlF_FULL: SPI RXFIFO is a half of full \arg SPI_RXLVL_FULL: SPI RXFIFO is full \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag) { if(RESET != (SPI_STAT(spi_periph) & flag)) { return SET; } else { if(SPI1 == spi_periph) { /* check TXFIFO is empty or not */ if(SPI_TXLVL_EMPTY == flag) { if(RESET != (SPI_STAT(spi_periph) & SPI_TXLVL_EMPTY_MASK)) { return RESET; } else { return SET; } } /* check RXFIFO is empty or not */ if(SPI_RXLVL_EMPTY == flag) { if(RESET != (SPI_STAT(spi_periph) & SPI_RXLVL_EMPTY_MASK)) { return RESET; } else { return SET; } } } return RESET; } } /*! \brief enable SPI and I2S interrupt \param[in] spi_periph: SPIx(x=0,1) \param[in] interrupt: SPI/I2S interrupt only one parameter can be selected which is shown as below: \arg SPI_I2S_INT_TBE: transmit buffer empty interrupt \arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt \arg SPI_I2S_INT_ERR: CRC error, configuration error, reception overrun error, transmission underrun error and format error interrupt \param[out] none \retval none */ void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt) { SPI_CTL1(spi_periph) |= (uint32_t)interrupt; } /*! \brief disable SPI and I2S interrupt \param[in] spi_periph: SPIx(x=0,1) \param[in] interrupt: SPI/I2S interrupt only one parameter can be selected which is shown as below: \arg SPI_I2S_INT_TBE: transmit buffer empty interrupt \arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt \arg SPI_I2S_INT_ERR: CRC error, configuration error, reception overrun error, transmission underrun error and format error interrupt \param[out] none \retval none */ void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt) { SPI_CTL1(spi_periph) &= ~(uint32_t)interrupt; } /*! \brief get SPI and I2S interrupt flag status \param[in] spi_periph: SPIx(x=0,1) \param[in] interrupt: SPI/I2S interrupt flag status only one parameter can be selected which is shown as below: \arg SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag \arg SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag \arg SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag \arg SPI_INT_FLAG_CONFERR: config error interrupt flag \arg SPI_INT_FLAG_CRCERR: CRC error interrupt flag \arg I2S_INT_FLAG_TXURERR: underrun error interrupt flag \arg SPI_I2S_INT_FLAG_FERR: format error interrupt flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt) { uint32_t reg1 = SPI_STAT(spi_periph); uint32_t reg2 = SPI_CTL1(spi_periph); switch(interrupt) { /* SPI/I2S transmit buffer empty interrupt */ case SPI_I2S_INT_FLAG_TBE: reg1 = reg1 & SPI_STAT_TBE; reg2 = reg2 & SPI_CTL1_TBEIE; break; /* SPI/I2S receive buffer not empty interrupt */ case SPI_I2S_INT_FLAG_RBNE: reg1 = reg1 & SPI_STAT_RBNE; reg2 = reg2 & SPI_CTL1_RBNEIE; break; /* SPI/I2S overrun interrupt */ case SPI_I2S_INT_FLAG_RXORERR: reg1 = reg1 & SPI_STAT_RXORERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI config error interrupt */ case SPI_INT_FLAG_CONFERR: reg1 = reg1 & SPI_STAT_CONFERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI CRC error interrupt */ case SPI_INT_FLAG_CRCERR: reg1 = reg1 & SPI_STAT_CRCERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* I2S underrun error interrupt */ case I2S_INT_FLAG_TXURERR: reg1 = reg1 & SPI_STAT_TXURERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; /* SPI/I2S format error interrupt */ case SPI_I2S_INT_FLAG_FERR: reg1 = reg1 & SPI_STAT_FERR; reg2 = reg2 & SPI_CTL1_ERRIE; break; default : break; } /*get SPI/I2S interrupt flag status */ if((0U != reg1) && (0U != reg2)) { return SET; } else { return RESET; } } /*! \brief clear SPI CRC error flag status \param[in] spi_periph: SPIx(x=0,1) \param[out] none \retval none */ void spi_crc_error_clear(uint32_t spi_periph) { SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR); }