axis_interp.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525
  1. //============================================================================//
  2. //2020.05.14 00:18 LXZ
  3. // 1、修改了部分定义
  4. // 2、将以往获取物理轴表大小的部分全替换成插补任务对象的变量
  5. // 3、计算加减速表大小参数修改保存至插补任务对象中
  6. //2020.05.19 17:19 LXZ
  7. // 1、修改进给输出为比例运算后输出
  8. // 2、修改设置轴接口为interp_set_axis,并增加比例参数
  9. //2020.05.19 17:19 LXZ
  10. // 1、修正进给比例的速度没对应修正问题
  11. //2020.05.26 16:34 LXZ
  12. // 1、去除没有测试的多余的函数接口
  13. // 2、增加了插补路径接口,更新相关接口的参数,主要是增停止减速
  14. // 3、更新了插补运算算法,现在减速度是额外设置的,
  15. // 4、整天结构调整应付连续插补功能,运行代码重写
  16. // 5、重新实现停止方法,去除所有停止相关代码,现在是设置停止位进行进给停止输出,
  17. // 真正的停止由外部自己处理,因为连续插补结构无法实现插补减速
  18. //2020.08.07 11:15
  19. // 1、移植比例放大功能
  20. // 2、增加放大进给的代码。
  21. //2021.08.21 12:55
  22. // 1、增加pi_round比例放大函数,带了四舍五入
  23. // 2、改进circle_get_eigth_of_part函数,利用当前进给实现精确的相位换算,能解决椭圆变速点定位困难的问题
  24. // 3、改进插补函数interp_begin_arc_3pt_task、interp_begin_arc_task、interp_begin_line_task等接口,增加对坐标、进给的
  25. // 比例变换。增加了interp_begin_ellipse_task函数用于启动椭圆路径加工。
  26. // 4、改进interp_work_arc_task、interp_work_line_task、interp_stop_arc_task、interp_stop_line_task等插补算法,通过算
  27. // 法的改进优化实现了进给的粒子细化,以前进给为齿轮比的倒数的倍数,粒子化后为单位脉冲,能实现更平稳的停止启动以及
  28. // 加速段的平滑度
  29. // 5、将共享加速表独立化到虚拟轴对象中,改进加减速算法为伪S曲线(中间断为直线),实现更加合理的加减速,合理避免了速度
  30. // 曲线的突变,更快加速到目标速度,但是会增加额外的内存,目前默认大小为1K
  31. // 6、圆弧算法被替换成了椭圆算法,从而兼容圆弧与椭圆的路径加工
  32. // 7、后级进给系统从当前的齿轮比倒数倍数还原成了以前的了1:1,并取消了下一级进给缓冲,因为现在后级倍率已经被取消,这
  33. // 部分不需要了
  34. //2021.08.25 00:12
  35. // 1、增加了椭圆开方结果做四舍五入,可以减少X\Y圆弧查补因为齿轮比差异太大产生一些误判,
  36. // 2、稍微平滑了加速度表
  37. // 3、取消了连续插补路径的位置补偿,因为现在不再是1:1的比列了,引入齿轮比后,路径会有比例变化,这时候采用这种方式去
  38. // 计算位置修正,本身也是会带来误差的,还不如不做修正
  39. //2022.04.11 10:47 LXZ
  40. // 通过优化8分圆判断算法,达到让椭圆弧加工过程不会速度剧烈波动造成机架抖动
  41. // 1、增加ellipse_get_eight_of_part_by_xaxis与ellipse_get_eight_of_part_by_yaxis两个判断8分圆位置的函数
  42. // X轴为长轴时用ellipse_get_eight_of_part_by_xaxis,Y轴为长轴时用ellipse_get_eight_of_part_by_yaxis
  43. // 删除以前判断圆8分圆位置的函数,该函数不再使用,以前使用的地方用上面两个函数代替
  44. // 2、增加interp_calc_arc_refrence,该函数是内部调用的,用于计算圆弧的8分圆参考位置(绝对值)
  45. // 3、修改加速过程为直线加减速
  46. //============================================================================//
  47. #include "axis_interp.h"
  48. #include <math.h>
  49. #include <stdio.h>
  50. #include <stdlib.h>
  51. #include <string.h>
  52. #define M_PI 3.14159265358979323846
  53. /**
  54. * 对数值进行比例放大后执行四舍五入
  55. *
  56. * @author LXZ (032620)
  57. *
  58. * @param interp 插补对象
  59. * @param start_point 开始坐标
  60. * @param end_point 终点坐标
  61. * @param speed 速度
  62. */
  63. static int pi_round(float value, float ratio) {
  64. if (value > 0) {
  65. return (int)((value * ratio) + 0.5);
  66. } else {
  67. return (int)((value * ratio) - 0.5);
  68. }
  69. }
  70. /**
  71. * 初始化插补对象的参数值
  72. *
  73. * @author LXZ (033120)
  74. *
  75. * @param interp 插补对象
  76. * @param ref_clcok 参考时钟
  77. */
  78. void interp_init(interp_task_t *interp, int ref_clcok) {
  79. int i = 0;
  80. memset(interp, 0, sizeof(interp_task_t));
  81. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  82. interp->axis[i].id = i;
  83. }
  84. interp->ref_clock = ref_clcok * INTERP_PERIOD;
  85. }
  86. /**
  87. * 关闭插补轴,关闭后轴将不参与计算与插补运动,如果是X轴或者Y轴,圆弧插补会强制打开
  88. *
  89. * @author LXZ (032620)
  90. *
  91. * @param interp 插补对象
  92. * @param axis 轴编号
  93. */
  94. void interp_axis_enable(interp_task_t *interp, char axis_id) {
  95. interp->axis[axis_id].flg = 1;
  96. }
  97. /**
  98. * 关闭插补轴,关闭后轴将不参与计算与插补运动,如果是X轴或者Y轴,圆弧插补会强制打开
  99. *
  100. * @author LXZ (032620)
  101. *
  102. * @param interp 插补对象
  103. * @param axis 轴编号
  104. */
  105. void interp_axis_disable(interp_task_t *interp, char axis_id) {
  106. interp->axis[axis_id].flg = 0;
  107. }
  108. /**
  109. * 为指定插补轴设置物理轴对象
  110. *
  111. * @author LXZ (032620)
  112. *
  113. * @param interp 插补对象
  114. * @param axis_id 轴编号
  115. * @param axis 轴对象
  116. * @param ratio 输出比例
  117. */
  118. void interp_set_axis(interp_task_t *interp, char axis_id, void *axis, float ratio, float max_acc) {
  119. interp->axis[axis_id].axis = axis;
  120. interp->axis[axis_id].ratio = ratio;
  121. interp->axis[axis_id].max_acc = max_acc;
  122. if (interp->axis[axis_id].max_acc > interp->axis[axis_id].ratio) {
  123. interp->axis[axis_id].max_acc = interp->axis[axis_id].ratio;
  124. }
  125. }
  126. /**
  127. * 对插补参数预初始化
  128. *
  129. * @author LXZ (032620)
  130. *
  131. * @param interp 插补对象
  132. */
  133. static void interp_task_init(interp_task_t *interp, int speed, int stop_speed) {
  134. int i = 0;
  135. float dst_speed = 0;
  136. int max_speed;
  137. int speed_table_size = 0;
  138. int axis_stop_speed = 0;
  139. //基本参数赋值
  140. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  141. //interp->axis[i].last_period = PERIOD_MAX_VALUE;
  142. //interp->axis[i].cur_speed = 0;
  143. interp->axis[i].dec_speed = 0;
  144. interp->axis[i].dec_position = 0;
  145. interp->axis[i].cur_delta = interp->axis[i].total_delta;
  146. if (interp->axis[i].flg) {
  147. interp_axis_calc_speed(&(interp->axis[i]), speed);
  148. }
  149. interp->axis[i].last_feed = 0;
  150. //关键参考坐标赋值
  151. interp->axis[i].cur_posi = interp->start_point.vector[i];
  152. interp->axis[i].target_posi = interp->end_point.vector[i];
  153. interp->axis[i].real_posi = interp->start_point.vector[i];
  154. interp->axis[i].start_posi = interp->start_point.vector[i];
  155. //轴真实位置初始值
  156. dst_speed = 0;
  157. max_speed = (int)(speed * interp->axis[i].ratio) / 1000;
  158. axis_stop_speed = (int)(stop_speed * interp->axis[i].ratio) / 1000;
  159. if (max_speed == 0) max_speed = 1;
  160. speed_table_size = 0;
  161. interp->axis[i].stop_speed = 0;
  162. while (dst_speed < max_speed) {
  163. dst_speed += 1;
  164. interp->axis[i].speed_table[speed_table_size] = (int)dst_speed;
  165. if (dst_speed <= axis_stop_speed) {
  166. interp->axis[i].stop_speed = speed_table_size;
  167. }
  168. speed_table_size++;
  169. }
  170. interp->axis[i].max_speed = speed_table_size;
  171. }
  172. interp->last_quadrant = 0;
  173. }
  174. /**
  175. * 复位插补任务,包括路径参数为0.开始位置为0
  176. *
  177. * @author LXZ (032620)
  178. *
  179. * @param interp 插补对象
  180. */
  181. void interp_task_reset(interp_task_t *interp) {
  182. int i = 0;
  183. //缓冲清0
  184. interp->cur_path_index = 0;
  185. interp->path_count = 0;
  186. //当前虚拟轴状态复位
  187. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  188. interp->axis[i].cur_posi = 0;
  189. interp->axis[i].cur_speed = 0;
  190. interp->axis[i].real_posi = 0;
  191. interp->axis[i].axis_position = 0;
  192. interp->axis[i].cur_delta = 0;
  193. interp->axis[i].last_period = PERIOD_MAX_VALUE;
  194. interp->axis[i].dec_speed = 0;
  195. interp->axis[i].dec_position = 0;
  196. interp->axis[i].last_feed = 0;
  197. }
  198. interp->last_quadrant = 0;
  199. memset(&interp->paths[0], 0, sizeof(interp->paths[0]));
  200. //工作缓冲状态复位
  201. interp->cur_buffer_index = 0;
  202. interp->feed_count = 0;
  203. for (i = 0; i < INTERP_WORK_BUFFER_NUMBER; i++) {
  204. interp->work_buffer[i].count = 0;
  205. }
  206. interp->stop_flg = 0; //关闭停止位,这时候周期进给任务会使能
  207. }
  208. /**
  209. * 算当前坐标在圆弧中所处的象限
  210. *
  211. * @author LXZ (032620)
  212. *
  213. * @param sn 圆弧方向
  214. * @param x 相对圆心的X轴坐标值
  215. * @param y 相对圆心的Y轴坐标值
  216. *
  217. * @return int 象限1~4
  218. */
  219. static int arc_get_quadrant(int sn, int x, int y) {
  220. int quadrant = 0;
  221. if ((x > 0) && (y > 0)) quadrant = 1;
  222. else if ((x < 0) && (y > 0)) quadrant = 2;
  223. else if ((x < 0) && (y < 0)) quadrant = 3;
  224. else if ((x > 0) && (y < 0)) quadrant = 4;
  225. // 如果在坐标轴上, 按顺序 判定
  226. if (sn == 0) { // 逆圆
  227. if ((x > 0) && (y == 0)) quadrant = 1;
  228. else if ((x == 0) && (y > 0)) quadrant = 2;
  229. else if ((x < 0) && (y == 0)) quadrant = 3;
  230. else if ((x == 0) && (y < 0)) quadrant = 4;
  231. } else { // 1 顺圆
  232. if ((x == 0) && (y > 0)) quadrant = 1;
  233. else if ((x < 0) && (y == 0)) quadrant = 2;
  234. else if ((x == 0) && (y < 0)) quadrant = 3;
  235. else if ((x > 0) && (y == 0)) quadrant = 4;
  236. }
  237. // 第几象限
  238. return quadrant;
  239. }
  240. /**
  241. * 为了不经过角度计算而开发的识别椭圆8分圆区域扩展(X轴)
  242. *
  243. * @author LXZ (040922)
  244. *
  245. * @param sn 方向
  246. * @param x 相对于圆心的X轴坐标
  247. * @param y 相对于圆心的Y轴坐标
  248. * @param ratio x,y轴比列
  249. * @param last_quadrant 上一次的象限,防止象限来回跳
  250. *
  251. * @return int
  252. * 1~8分别代码8分圆8个象限,跟四象限一样,每个象限再细分两半
  253. */
  254. static int ellipse_get_eight_of_part_by_xaxis(int sn, int x, int y, int refrence, int last)
  255. {
  256. int quadrant = 0;
  257. if ((x > 0) && (y > 0)) quadrant = 1;
  258. else if ((x < 0) && (y > 0)) quadrant = 2;
  259. else if ((x < 0) && (y < 0)) quadrant = 3;
  260. else if ((x > 0) && (y < 0)) quadrant = 4;
  261. else if (x == 0)
  262. {
  263. if (sn == 0) // 逆圆
  264. {
  265. if (y > 0)quadrant = 2;
  266. else quadrant = 4;
  267. }
  268. else //顺圆
  269. {
  270. if (y > 0) quadrant = 1;
  271. else quadrant = 3;
  272. }
  273. }
  274. else if (y == 0)
  275. {
  276. if (sn == 0) //逆圆
  277. {
  278. if (x > 0) quadrant = 1;
  279. else quadrant = 3;
  280. }
  281. else //顺圆4
  282. {
  283. if (x > 0) quadrant = 4;
  284. else quadrant = 2;
  285. }
  286. }
  287. if (x < 0) x = -x;
  288. //求得8分圆像限位置
  289. switch (quadrant)
  290. {
  291. case 1:
  292. if (sn == 0) //逆圆
  293. {
  294. if (x >= refrence)
  295. {
  296. //第二象限在逆圆情况下不可能2转向1
  297. if (last != 2)
  298. quadrant = 1;
  299. else
  300. quadrant = last;
  301. }
  302. else
  303. {
  304. //第二象限在逆圆情况下不可能3转向2
  305. if (last != 3)
  306. quadrant = 2;
  307. else
  308. quadrant = last;
  309. }
  310. }
  311. else //顺圆
  312. {
  313. if (x <= refrence)
  314. {
  315. //第二象限在顺圆情况下不可能1转向2
  316. if (last != 1)
  317. quadrant = 2;
  318. else
  319. quadrant = last;
  320. }
  321. else
  322. {
  323. //第二象限在顺圆情况下不可能2转向3
  324. if (last != 2)
  325. quadrant = 3;
  326. else
  327. quadrant = last;
  328. }
  329. }
  330. break;
  331. case 2:
  332. if (sn == 0) //逆圆
  333. {
  334. if (x >= refrence)
  335. {
  336. //第二象限在逆圆情况下不可能2转向1
  337. if (last != 5)
  338. quadrant = 4;
  339. else
  340. quadrant = last;
  341. }
  342. else
  343. {
  344. //第二象限在逆圆情况下不可能3转向2
  345. if (last != 4)
  346. quadrant = 3;
  347. else
  348. quadrant = last;
  349. }
  350. }
  351. else //顺圆
  352. {
  353. if (x <= refrence)
  354. {
  355. //第二象限在顺圆情况下不可能1转向2
  356. if (last != 2)
  357. quadrant = 3;
  358. else
  359. quadrant = last;
  360. }
  361. else
  362. {
  363. //第二象限在顺圆情况下不可能2转向3
  364. if (last != 3)
  365. quadrant = 4;
  366. else
  367. quadrant = last;
  368. }
  369. }
  370. break;
  371. case 3:
  372. if (sn == 0) //逆圆
  373. {
  374. if (x >= refrence)
  375. {
  376. //第二象限在逆圆情况下不可能2转向1
  377. if (last != 6)
  378. quadrant = 5;
  379. else
  380. quadrant = last;
  381. }
  382. else
  383. {
  384. //第二象限在逆圆情况下不可能3转向2
  385. if (last != 7)
  386. quadrant = 6;
  387. else
  388. quadrant = last;
  389. }
  390. }
  391. else //顺圆
  392. {
  393. if (x <= refrence)
  394. {
  395. //第二象限在顺圆情况下不可能1转向2
  396. if (last != 5)
  397. quadrant = 6;
  398. else
  399. quadrant = last;
  400. }
  401. else
  402. {
  403. //第二象限在顺圆情况下不可能2转向3
  404. if (last != 4)
  405. quadrant = 5;
  406. else
  407. quadrant = last;
  408. }
  409. }
  410. break;
  411. case 4:
  412. if (sn == 0) //逆圆
  413. {
  414. if (x >= refrence)
  415. {
  416. //第二象限在逆圆情况下不可能2转向1
  417. if (last != 1)
  418. quadrant = 8;
  419. else
  420. quadrant = last;
  421. }
  422. else
  423. {
  424. //第二象限在逆圆情况下不可能3转向2
  425. if (last != 8)
  426. quadrant = 7;
  427. else
  428. quadrant = last;
  429. }
  430. }
  431. else //顺圆
  432. {
  433. if (x <= refrence)
  434. {
  435. //第二象限在顺圆情况下不可能1转向2
  436. if (last != 6)
  437. quadrant = 7;
  438. else
  439. quadrant = last;
  440. }
  441. else
  442. {
  443. //第二象限在顺圆情况下不可能2转向3
  444. if (last != 7)
  445. quadrant = 8;
  446. else
  447. quadrant = last;
  448. }
  449. }
  450. break;
  451. }
  452. return quadrant;
  453. }
  454. /**
  455. * 为了不经过角度计算而开发的识别椭圆8分圆区域扩展(Y轴)
  456. *
  457. * @author LXZ (040922)
  458. *
  459. * @param sn 方向
  460. * @param x 相对于圆心的X轴坐标
  461. * @param y 相对于圆心的Y轴坐标
  462. * @param ratio x,y轴比列
  463. * @param last_quadrant 上一次的象限,防止象限来回跳
  464. *
  465. * @return int
  466. * 1~8分别代码8分圆8个象限,跟四象限一样,每个象限再细分两半
  467. */
  468. static int ellipse_get_eight_of_part_by_yaxis(int sn, int x, int y,
  469. int refrence,int last)
  470. {
  471. int quadrant = 0;
  472. if ((x > 0) && (y > 0)) quadrant = 1;
  473. else if ((x < 0) && (y > 0)) quadrant = 2;
  474. else if ((x < 0) && (y < 0)) quadrant = 3;
  475. else if ((x > 0) && (y < 0)) quadrant = 4;
  476. else if (x == 0)
  477. {
  478. if (sn == 0) // 逆圆
  479. {
  480. if (y > 0)quadrant = 2;
  481. else quadrant = 4;
  482. }
  483. else //顺圆
  484. {
  485. if (y > 0) quadrant = 1;
  486. else quadrant = 3;
  487. }
  488. }
  489. else if (y == 0)
  490. {
  491. if (sn == 0) //逆圆
  492. {
  493. if (x > 0) quadrant = 1;
  494. else quadrant = 3;
  495. }
  496. else //顺圆4
  497. {
  498. if (x > 0) quadrant = 4;
  499. else quadrant = 2;
  500. }
  501. }
  502. if (y < 0) y = -y;
  503. //求得8分圆像限位置
  504. switch (quadrant)
  505. {
  506. case 1:
  507. if (sn == 0) //逆圆
  508. {
  509. if (y >= refrence)
  510. {
  511. //第二象限在逆圆情况下不可能2转向1
  512. if (last != 3)
  513. quadrant = 2;
  514. else
  515. quadrant = last;
  516. }
  517. else
  518. {
  519. //第二象限在逆圆情况下不可能3转向2
  520. if (last != 2)
  521. quadrant = 1;
  522. else
  523. quadrant = last;
  524. }
  525. }
  526. else //顺圆
  527. {
  528. if (y <= refrence)
  529. {
  530. //第二象限在顺圆情况下不可能1转向2
  531. if (last != 8)
  532. quadrant = 1;
  533. else
  534. quadrant = last;
  535. }
  536. else
  537. {
  538. //第二象限在顺圆情况下不可能2转向3
  539. if (last != 1)
  540. quadrant = 2;
  541. else
  542. quadrant = last;
  543. }
  544. }
  545. break;
  546. case 2:
  547. if (sn == 0) //逆圆
  548. {
  549. if (y >= refrence)
  550. {
  551. //第二象限在逆圆情况下不可能2转向1
  552. if (last != 4)
  553. quadrant = 3;
  554. else
  555. quadrant = last;
  556. }
  557. else
  558. {
  559. //第二象限在逆圆情况下不可能3转向2
  560. if (last != 5)
  561. quadrant = 4;
  562. else
  563. quadrant = last;
  564. }
  565. }
  566. else //顺圆
  567. {
  568. if (y <= refrence)
  569. {
  570. //第二象限在顺圆情况下不可能1转向2
  571. if (last != 3)
  572. quadrant = 4;
  573. else
  574. quadrant = last;
  575. }
  576. else
  577. {
  578. //第二象限在顺圆情况下不可能2转向3
  579. if (last != 2)
  580. quadrant = 3;
  581. else
  582. quadrant = last;
  583. }
  584. }
  585. break;
  586. case 3:
  587. if (sn == 0) //逆圆
  588. {
  589. if (y >= refrence)
  590. {
  591. //第二象限在逆圆情况下不可能2转向1
  592. if (last != 7)
  593. quadrant = 6;
  594. else
  595. quadrant = last;
  596. }
  597. else
  598. {
  599. //第二象限在逆圆情况下不可能3转向2
  600. if (last != 6)
  601. quadrant = 5;
  602. else
  603. quadrant = last;
  604. }
  605. }
  606. else //顺圆
  607. {
  608. if (y <= refrence)
  609. {
  610. //第二象限在顺圆情况下不可能1转向2
  611. if (last != 4)
  612. quadrant = 5;
  613. else
  614. quadrant = last;
  615. }
  616. else
  617. {
  618. //第二象限在顺圆情况下不可能2转向3
  619. if (last != 5)
  620. quadrant = 6;
  621. else
  622. quadrant = last;
  623. }
  624. }
  625. break;
  626. case 4:
  627. if (sn == 0) //逆圆
  628. {
  629. if (y >= refrence)
  630. {
  631. //第二象限在逆圆情况下不可能2转向1
  632. if (last != 8)
  633. quadrant = 7;
  634. else
  635. quadrant = last;
  636. }
  637. else
  638. {
  639. //第二象限在逆圆情况下不可能3转向2
  640. if (last != 1)
  641. quadrant = 8;
  642. else
  643. quadrant = last;
  644. }
  645. }
  646. else //顺圆
  647. {
  648. if (y <= refrence)
  649. {
  650. //第二象限在顺圆情况下不可能1转向2
  651. if (last != 7)
  652. quadrant = 8;
  653. else
  654. quadrant = last;
  655. }
  656. else
  657. {
  658. //第二象限在顺圆情况下不可能2转向3
  659. if (last != 6)
  660. quadrant = 7;
  661. else
  662. quadrant = last;
  663. }
  664. }
  665. break;
  666. }
  667. return quadrant;
  668. }
  669. /**
  670. * 选择要进行圆弧插补的有效轴
  671. *
  672. * @author LXZ (040120)
  673. *
  674. * @param interp 插补对象
  675. * @param axis_x_id X轴编号
  676. * @param axis_y_id Y轴编号
  677. */
  678. void interp_set_arc_axis(interp_task_t *interp, char axis_x_idx, char axis_y_idx) {
  679. interp->arc_x_idx = axis_x_idx;
  680. interp->arc_y_idx = axis_y_idx;
  681. }
  682. /**
  683. * 求出两个值的平方差的开方
  684. *
  685. * @author LXZ (032820)
  686. *
  687. * @param x 圆半径
  688. * @param y X或者Y坐标相对圆心的偏移量
  689. * @param ratio1 相对于输入轴的齿轮比
  690. * @param ratio2 相对于输出轴的齿轮比
  691. *
  692. * @return int
  693. */
  694. int circle_sqrt(int x, int y, float ratio1, float ratio2) {
  695. float fx, fy;
  696. fx = x;
  697. fy = y / ratio1;
  698. if (fx <= fy) return 0;
  699. return (int)(sqrtf((fx * fx - fy * fy)) * ratio2);
  700. }
  701. /**
  702. * 知道中心点在0点的椭圆的一个点一个坐标值,求另一个坐标值
  703. *
  704. * @author LXZ (032820)
  705. *
  706. * @param x 其中一个坐标值
  707. * @param a 坐标值对应的轴长
  708. * @param b 另一个轴的轴长
  709. *
  710. * @return int 返回另一个轴的坐标值
  711. */
  712. int eclipse_sqrt(float x, float a, float b) {
  713. //float y = 0;
  714. //float r = b * b;
  715. //float res = (x * x) /(a * a) * r;
  716. //y = sqrtf(r - res);
  717. //return (int)y;
  718. return (int)(sqrtf(b * b - (x * x) / (a * a) * (b * b)) + 0.5);
  719. }
  720. /**
  721. * 增加直线路径
  722. *
  723. * @author LXZ (032620)
  724. *
  725. * @param interp 插补对象
  726. * @param end_point 终点坐标
  727. * @param target_speed 目标速度
  728. * @param stop_speed 停止速度
  729. */
  730. void interp_add_liner_path(interp_task_t *interp,
  731. axis_vector_t *end_point,
  732. int target_speed,
  733. int stop_speed
  734. ) {
  735. if (interp->path_count < INTERP_PATH_SIZE) { //限制路径条数
  736. interp_path_t *path = &interp->paths[interp->path_count];
  737. path->work_type = INTERP_MODE_LINE; //直线插补
  738. path->end_point = *end_point;
  739. path->target_speed = target_speed;
  740. path->stop_speed = stop_speed;
  741. interp->path_count++;
  742. }
  743. }
  744. /**
  745. * 增加圆弧路径
  746. *
  747. * @author LXZ (032620)
  748. *
  749. * @param interp 插补对象
  750. * @param end_point 终点坐标
  751. * @param target_speed 目标速度
  752. * @param stop_speed 停止速度
  753. */
  754. void interp_add_arc_path(interp_task_t *interp,
  755. char arc_x_id,
  756. char arc_y_id,
  757. axis_vector_t *end_point,
  758. axis_vector_t *centre_point,
  759. int dir,
  760. int target_speed,
  761. int stop_speed
  762. ) {
  763. if (interp->path_count < INTERP_PATH_SIZE) { //限制路径条数
  764. interp_path_t *path = &interp->paths[interp->path_count];
  765. path->work_type = INTERP_MODE_ARC; //圆弧插补
  766. path->wor_dir = dir;
  767. path->end_point = *end_point;
  768. path->centre_point = *centre_point;
  769. path->target_speed = target_speed;
  770. path->stop_speed = stop_speed;
  771. path->arc_x_id = arc_x_id;
  772. path->arc_y_id = arc_y_id;
  773. interp->path_count++;
  774. }
  775. }
  776. /**
  777. * 增加椭圆弧路径
  778. *
  779. * @author LXZ (032620)
  780. *
  781. * @param interp 插补对象
  782. * @param end_point 终点坐标
  783. * @param target_speed 目标速度
  784. * @param stop_speed 停止速度
  785. */
  786. void interp_add_ellipse_path(interp_task_t *interp,
  787. char arc_x_id,
  788. char arc_y_id,
  789. axis_vector_t *end_point,
  790. axis_vector_t *centre_point,
  791. int a,
  792. int b,
  793. int dir,
  794. int target_speed,
  795. int stop_speed
  796. ) {
  797. if (interp->path_count < INTERP_PATH_SIZE) { //限制路径条数
  798. interp_path_t *path = &interp->paths[interp->path_count];
  799. path->work_type = INTERP_MODE_ELLIPSE; //椭圆弧插补
  800. path->wor_dir = dir;
  801. path->end_point = *end_point;
  802. path->centre_point = *centre_point;
  803. path->target_speed = target_speed;
  804. path->stop_speed = stop_speed;
  805. path->arc_x_id = arc_x_id;
  806. path->arc_y_id = arc_y_id;
  807. path->radius_x = a;
  808. path->radius_y = b;
  809. interp->path_count++;
  810. }
  811. }
  812. /**
  813. * 计算圆弧的8分之一参照位置
  814. *
  815. * @author LXZ (041022)
  816. *
  817. * @param interp 插补对象
  818. */
  819. static void interp_calc_arc_refrence(interp_task_t* interp)
  820. {
  821. //计算原理
  822. //要到达8分之一位置 ,需要有X轴走的比例与Y轴走的比例一样
  823. //假设椭圆长轴的轴半径是A,短轴的轴半径是B
  824. //即在椭圆中长轴走的距离a与短轴走的距离b关系是,则b = a * B / A;
  825. //由于椭圆的直线方程为 (X^2)/(A^2)+(Y^2)/(B^2) = 1
  826. //由于参照点是在椭圆上的,会满足椭圆方程,那么Y=b= a*B/A=X*B/A;
  827. //则方程可以变化为
  828. //(X^2)/(A^2) + ((X*B/A)^2)/(B^2) = 1
  829. //所以求X点坐标可以这么求
  830. //X =sqrt(1/(1/(A^2) + ((B/A)^2)/B^2))) = sqrt(1/(1/(A^2) + 1/(A^2))) = sqrt((A^2)/2) = A* sqrt(0.5);
  831. interp->quadrant_refrence.vector[interp->arc_x_idx] = interp->axis_length.vector[interp->arc_x_idx] * sqrt(0.5);
  832. interp->quadrant_refrence.vector[interp->arc_y_idx] = interp->axis_length.vector[interp->arc_y_idx] * sqrt(0.5);
  833. }
  834. /**
  835. * 通过三点求圆弧的方式,开始插补任务,不满足圆弧时利用直线去走
  836. *
  837. * @author LXZ (033120)
  838. *
  839. * @param interp 插补对象
  840. * @param start_point 开始坐标
  841. * @param end_point 终点坐标
  842. * @param middle_point 中点坐标
  843. * @param speed 速度
  844. */
  845. void interp_begin_arc_3pt_task(
  846. interp_task_t *interp,
  847. axis_vector_t *start_point,
  848. axis_vector_t *end_point,
  849. axis_vector_t *middle_point,
  850. int speed
  851. ) {
  852. int i = 0;
  853. float ax, ay, bx, by, cx, cy;
  854. float line_flg = 0; // 1, 三点共线
  855. float mid_a, mid_b, mid_c, mid_d;
  856. float mid_e, mid_f;
  857. float x11_org, y11_org;
  858. float radius;
  859. ax = start_point->vector[interp->arc_x_idx];
  860. ay = start_point->vector[interp->arc_y_idx];
  861. bx = middle_point->vector[interp->arc_x_idx];
  862. by = middle_point->vector[interp->arc_y_idx];
  863. cx = end_point->vector[interp->arc_x_idx];
  864. cy = end_point->vector[interp->arc_y_idx];
  865. //三点重合,不符合直线
  866. if (((ax == bx) && (cx == bx)) && ((by == ay) && (cy == by))) {
  867. interp->mode = INTERP_MODE_FREE;
  868. return;
  869. }
  870. //计算斜率是否一样
  871. //由公式(y2 - y1)/(x2 - x1) = (y3 - y2) / (x3 - x2)
  872. //可得变形式 (y2 - y1)* (x3 - x2) - (y3- y2) *(x2 - x1) = 0
  873. //结果不为0说明不是一条直线,但是可以省掉除法从而提高正确率
  874. line_flg = (bx - ax) * (cy - by) - (cx - bx) * (by - ay);
  875. if (line_flg > 0) {
  876. //该圆为逆时针的圆,因为斜率增大
  877. interp->arc_dir = 0;
  878. } else if (line_flg < 0) {
  879. //该圆为顺圆
  880. interp->arc_dir = 1;
  881. } else {
  882. //这是直线,必须用直线方式运动
  883. interp_begin_line_task(interp, start_point, end_point, speed, 0);
  884. return;
  885. }
  886. //计算圆心坐标与半径
  887. //中间计算公式
  888. mid_a = ax - bx;
  889. mid_b = ay - by;
  890. mid_c = ax - cx;
  891. mid_d = ay - cy;
  892. mid_e = ((ax * ax - bx * bx) - (by * by - ay * ay)) / 2.0f;
  893. mid_f = ((ax * ax - cx * cx) - (cy * cy - ay * ay)) / 2.0f;
  894. //计算(ax - cx) * (ay - by) - (ax - bx) * (ay - cy) != 0
  895. //同于计算if((ay - cy)/(ax - cx) != (ay - by) / (ax - bx))
  896. //这个其实是判断三个点的斜率是否有变化,没有任何变化,说明三个点是在一个线上,不可能构成圆
  897. //通过将除法运算变换成乘法,可以规避除数为0不合法导致异常的事情发生(求斜率经常发生的事)
  898. if ((mid_b * mid_c - mid_a * mid_d) != 0) {
  899. //通过圆的方程x*x + y*y = r*r
  900. //可以分别获得点[a,b]与[a,c]对于圆心(x0,y0)的方程
  901. //经过不同变换化去x0或者y0可以求出另一个值,公式太麻烦不列出,但是完全可以从圆方程推导出来
  902. x11_org = -(mid_d * mid_e - mid_b * mid_f) / (mid_b * mid_c - mid_a * mid_d);
  903. y11_org = -(mid_a * mid_f - mid_c * mid_e) / (mid_b * mid_c - mid_a * mid_d);
  904. } else {
  905. interp_begin_line_task(interp, start_point, end_point, speed, 0);
  906. return;
  907. }
  908. //限制有效值是小数点后三位,如果输入是直接脉冲当量,就不例会了
  909. //if (Math.Abs(x11_org) < 1.0e-3) x11_org = 0.0f;
  910. //if (Math.Abs(y11_org) < 1.0e-3) y11_org = 0.0f;
  911. //圆弧需要强制开启X轴与Y轴,暂时不支持Z轴同时插补,所以会关闭Z轴
  912. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  913. if (i == interp->arc_x_idx ||
  914. i == interp->arc_y_idx) {
  915. interp_axis_enable(interp, i);
  916. } else {
  917. interp_axis_disable(interp, i);
  918. }
  919. }
  920. interp->mode = INTERP_MODE_ARC;
  921. interp->start_point = *start_point;
  922. interp->end_point = *end_point;
  923. //计算半径
  924. radius = (float)sqrtf((x11_org - ax) * (x11_org - ax) + (y11_org - ay) * (y11_org - ay));
  925. //保存圆心坐标
  926. interp->centre_point.vector[interp->arc_x_idx] = (int)x11_org;
  927. interp->centre_point.vector[interp->arc_y_idx] = (int)y11_org;
  928. interp->arc_radius = (int)radius;
  929. //起点与终点所在的象限
  930. int quadrant_start = arc_get_quadrant(interp->arc_dir,
  931. (int)(ax - interp->centre_point.vector[interp->arc_x_idx]),
  932. (int)(ay - interp->centre_point.vector[interp->arc_y_idx]));
  933. int quadrant_end = arc_get_quadrant(interp->arc_dir,
  934. (int)(cx - interp->centre_point.vector[interp->arc_x_idx]),
  935. (int)(cy - interp->centre_point.vector[interp->arc_y_idx]));
  936. //计算两轴的总进给
  937. ax = interp->start_point.vector[interp->arc_x_idx] -
  938. interp->centre_point.vector[interp->arc_x_idx];
  939. ay = interp->start_point.vector[interp->arc_y_idx] -
  940. interp->centre_point.vector[interp->arc_y_idx];
  941. cx = interp->end_point.vector[interp->arc_x_idx] -
  942. interp->centre_point.vector[interp->arc_x_idx];
  943. cy = interp->end_point.vector[interp->arc_y_idx] -
  944. interp->centre_point.vector[interp->arc_y_idx];
  945. {
  946. //求角度,
  947. float start_deg = (float)(acos((float)ax / interp->arc_radius) * 180 / M_PI);
  948. float end_deg = (float)(acos((float)cx / interp->arc_radius) * 180 / M_PI);
  949. float delta_deg = 0;
  950. if (quadrant_start == 1 && start_deg == 0 && interp->arc_dir == 1) //当判断是第一象限并且是顺针同时也是角度0的时候,
  951. // 其实它是算第四象限才对
  952. {
  953. start_deg = 360;
  954. } else if (quadrant_start > 2) { //180度修正
  955. start_deg = 360 - start_deg;
  956. }
  957. if ((quadrant_end == 1 && end_deg == 0 && interp->arc_dir == 0)) //当判断是第一象限并且是逆时针同时也是角度0的时候,
  958. // 其实它是算第四象限才对
  959. {
  960. end_deg = 360;
  961. } else if (quadrant_end > 2) {
  962. end_deg = 360 - end_deg;
  963. }
  964. //初始化总进给量
  965. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  966. interp->axis[i].total_delta = 0;
  967. }
  968. //求总进给角度
  969. //根据角度求出具体的总进给值
  970. if (interp->arc_dir == 0) { //逆时针
  971. delta_deg = end_deg - start_deg;
  972. if (delta_deg < 0) {
  973. delta_deg += 360;
  974. }
  975. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  976. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius + ax) + (interp->arc_radius + cx)));
  977. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  978. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius - ax) + (interp->arc_radius - cx)));
  979. } else if (start_deg >= end_deg) { //大于半圆
  980. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(interp->arc_radius * 4 - abs((int)(cx - ax))));
  981. } else { //小于半圆
  982. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  983. }
  984. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  985. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius - ay) + (interp->arc_radius - cy)));
  986. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  987. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius + ay) + (interp->arc_radius + cy)));
  988. } else if (delta_deg > 180) {
  989. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * interp->arc_radius - abs((int)(cy - ay))));
  990. } else {
  991. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  992. }
  993. } else { //顺时针
  994. delta_deg = start_deg - end_deg;
  995. if (delta_deg < 0) {
  996. delta_deg += 360;
  997. }
  998. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  999. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius - ax) + (interp->arc_radius - cx)));
  1000. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  1001. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius + ax) + (interp->arc_radius + cx)));
  1002. } else if (start_deg <= end_deg) { //大于半圆
  1003. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(interp->arc_radius * 4 - abs((int)(cx - ax))));
  1004. } else { //小于半圆
  1005. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  1006. }
  1007. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  1008. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius + ay) + (interp->arc_radius + cy)));
  1009. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  1010. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius - ay) + (interp->arc_radius - cy)));
  1011. } else if (delta_deg > 180) {
  1012. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * interp->arc_radius - abs((int)(cy - ay))));
  1013. } else {
  1014. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  1015. }
  1016. }
  1017. }
  1018. //进给量比例变换
  1019. interp->axis[interp->arc_x_idx].total_delta = pi_round(interp->axis[interp->arc_x_idx].total_delta,
  1020. interp->axis[interp->arc_x_idx].ratio);
  1021. interp->axis[interp->arc_y_idx].total_delta = pi_round(interp->axis[interp->arc_y_idx].total_delta,
  1022. interp->axis[interp->arc_y_idx].ratio);
  1023. interp->start_point.vector[interp->arc_x_idx] = pi_round(interp->start_point.vector[interp->arc_x_idx],
  1024. interp->axis[interp->arc_x_idx].ratio);
  1025. interp->start_point.vector[interp->arc_y_idx] = pi_round(interp->start_point.vector[interp->arc_y_idx],
  1026. interp->axis[interp->arc_y_idx].ratio);
  1027. interp->end_point.vector[interp->arc_x_idx] = pi_round(interp->end_point.vector[interp->arc_x_idx],
  1028. interp->axis[interp->arc_x_idx].ratio);
  1029. interp->end_point.vector[interp->arc_y_idx] = pi_round(interp->end_point.vector[interp->arc_y_idx],
  1030. interp->axis[interp->arc_y_idx].ratio);
  1031. interp->centre_point.vector[interp->arc_x_idx] = pi_round(interp->centre_point.vector[interp->arc_x_idx],
  1032. interp->axis[interp->arc_x_idx].ratio);
  1033. interp->centre_point.vector[interp->arc_y_idx] = pi_round(interp->centre_point.vector[interp->arc_y_idx],
  1034. interp->axis[interp->arc_y_idx].ratio);
  1035. interp->axis_length.vector[interp->arc_x_idx] = pi_round(interp->arc_radius, interp->axis[interp->arc_x_idx].ratio);
  1036. interp->axis_length.vector[interp->arc_y_idx] = pi_round(interp->arc_radius, interp->axis[interp->arc_y_idx].ratio);
  1037. //计算8分圆的参考位置(相对圩圆心的绝对偏移)
  1038. interp_calc_arc_refrence(interp);
  1039. //利用三点一计算出圆心与方向
  1040. interp_task_init(interp, speed, 0);
  1041. }
  1042. /**
  1043. * 通过圆心与方向,开始圆弧的插补任务
  1044. *
  1045. * @author LXZ (032620)
  1046. *
  1047. * @param interp 插补对象
  1048. * @param start_point 开始坐标
  1049. * @param end_point 终点坐标
  1050. * @param centre_point 圆心坐标
  1051. * @param dir 方向,0表示逆时针,1表示顺时针
  1052. */
  1053. void interp_begin_arc_task(
  1054. interp_task_t *interp,
  1055. axis_vector_t *start_point,
  1056. axis_vector_t *end_point,
  1057. axis_vector_t *centre_point,
  1058. int dir,
  1059. int speed,
  1060. int stop_speed
  1061. ) {
  1062. float dx, dy, radius;
  1063. int ax, ay, cx, cy;
  1064. int i = 0;
  1065. //求半径
  1066. dx = centre_point->vector[interp->arc_x_idx] -
  1067. start_point->vector[interp->arc_x_idx];
  1068. dy = centre_point->vector[interp->arc_y_idx] -
  1069. start_point->vector[interp->arc_y_idx];
  1070. ax = start_point->vector[interp->arc_x_idx] -
  1071. centre_point->vector[interp->arc_x_idx];
  1072. ay = start_point->vector[interp->arc_y_idx] -
  1073. centre_point->vector[interp->arc_y_idx];
  1074. cx = end_point->vector[interp->arc_x_idx] -
  1075. centre_point->vector[interp->arc_x_idx];
  1076. cy = end_point->vector[interp->arc_y_idx] -
  1077. centre_point->vector[interp->arc_y_idx];
  1078. radius = sqrtf(dx * dx + dy * dy);
  1079. //初始值
  1080. interp->arc_dir = dir;
  1081. interp->centre_point = *centre_point;
  1082. interp->start_point = *start_point;
  1083. interp->end_point = *end_point;
  1084. interp->arc_radius = (int)radius;
  1085. //计算进给总量
  1086. //圆弧需要强制开启X轴与Y轴,暂时不支持Z轴同时插补,所以会关闭Z轴
  1087. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1088. if (i == interp->arc_x_idx ||
  1089. i == interp->arc_y_idx) {
  1090. interp_axis_enable(interp, i);
  1091. } else {
  1092. interp_axis_disable(interp, i);
  1093. }
  1094. }
  1095. interp->mode = INTERP_MODE_ARC;
  1096. if (start_point->vector[interp->arc_x_idx] == end_point->vector[interp->arc_x_idx] &&
  1097. start_point->vector[interp->arc_y_idx] == end_point->vector[interp->arc_y_idx]) {
  1098. interp->axis[interp->arc_x_idx].total_delta = interp->arc_radius * 4;
  1099. interp->axis[interp->arc_y_idx].total_delta = interp->arc_radius * 4;
  1100. } else {
  1101. //起点与终点所在的象限
  1102. int quadrant_start = arc_get_quadrant(interp->arc_dir,
  1103. ax,
  1104. ay);
  1105. int quadrant_end = arc_get_quadrant(interp->arc_dir,
  1106. cx,
  1107. cy);
  1108. //求角度,
  1109. float start_deg = (float)(acosf((float)ax / interp->arc_radius) * 180 / M_PI);
  1110. float end_deg = (float)(acosf((float)cx / interp->arc_radius) * 180 / M_PI);
  1111. float delta_deg = 0;
  1112. //根据象限修正角度
  1113. if (quadrant_start == 1 && start_deg == 0 && interp->arc_dir == 1) //当判断是第一象限并且是顺针同时也是角度0的时候,
  1114. // 其实它是算第四象限才对
  1115. {
  1116. start_deg = 360;
  1117. } else if (quadrant_start > 2) { //180度修正
  1118. start_deg = 360 - start_deg;
  1119. }
  1120. if ((quadrant_end == 1 && end_deg == 0 && interp->arc_dir == 0)) //当判断是第一象限并且是逆时针同时也是角度0的时候,
  1121. // 其实它是算第四象限才对
  1122. {
  1123. end_deg = 360;
  1124. } else if (quadrant_end > 2) {
  1125. end_deg = 360 - end_deg;
  1126. }
  1127. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1128. interp->axis[i].total_delta = 0;
  1129. }
  1130. //根据角度求进给量
  1131. //根据角度求出具体的总进给值
  1132. //根据角度求出具体的总进给值
  1133. if (interp->arc_dir == 0) { //逆时针
  1134. delta_deg = end_deg - start_deg;
  1135. if (delta_deg < 0) {
  1136. delta_deg += 360;
  1137. }
  1138. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  1139. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius + ax) + (interp->arc_radius + cx)));
  1140. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  1141. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius - ax) + (interp->arc_radius - cx)));
  1142. } else if (start_deg >= end_deg) { //大于半圆
  1143. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(interp->arc_radius * 4 - abs((int)(cx - ax))));
  1144. } else { //小于半圆
  1145. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  1146. }
  1147. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  1148. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius - ay) + (interp->arc_radius - cy)));
  1149. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  1150. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius + ay) + (interp->arc_radius + cy)));
  1151. } else if (delta_deg > 180) {
  1152. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * interp->arc_radius - abs((int)(cy - ay))));
  1153. } else {
  1154. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  1155. }
  1156. } else { //顺时针
  1157. delta_deg = start_deg - end_deg;
  1158. if (delta_deg < 0) {
  1159. delta_deg += 360;
  1160. }
  1161. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  1162. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius - ax) + (interp->arc_radius - cx)));
  1163. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  1164. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((interp->arc_radius + ax) + (interp->arc_radius + cx)));
  1165. } else if (start_deg <= end_deg) { //大于半圆
  1166. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(interp->arc_radius * 4 - abs((int)(cx - ax))));
  1167. } else { //小于半圆
  1168. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  1169. }
  1170. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  1171. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius + ay) + (interp->arc_radius + cy)));
  1172. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  1173. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((interp->arc_radius - ay) + (interp->arc_radius - cy)));
  1174. } else if (delta_deg > 180) {
  1175. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * interp->arc_radius - abs((int)(cy - ay))));
  1176. } else {
  1177. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  1178. }
  1179. }
  1180. }
  1181. //进给量比例变换
  1182. interp->axis[interp->arc_x_idx].total_delta = pi_round(interp->axis[interp->arc_x_idx].total_delta,
  1183. interp->axis[interp->arc_x_idx].ratio);
  1184. interp->axis[interp->arc_y_idx].total_delta = pi_round(interp->axis[interp->arc_y_idx].total_delta,
  1185. interp->axis[interp->arc_y_idx].ratio);
  1186. interp->start_point.vector[interp->arc_x_idx] = pi_round(interp->start_point.vector[interp->arc_x_idx],
  1187. interp->axis[interp->arc_x_idx].ratio);
  1188. interp->start_point.vector[interp->arc_y_idx] = pi_round(interp->start_point.vector[interp->arc_y_idx],
  1189. interp->axis[interp->arc_y_idx].ratio);
  1190. interp->end_point.vector[interp->arc_x_idx] = pi_round(interp->end_point.vector[interp->arc_x_idx],
  1191. interp->axis[interp->arc_x_idx].ratio);
  1192. interp->end_point.vector[interp->arc_y_idx] = pi_round(interp->end_point.vector[interp->arc_y_idx],
  1193. interp->axis[interp->arc_y_idx].ratio);
  1194. interp->centre_point.vector[interp->arc_x_idx] = pi_round(interp->centre_point.vector[interp->arc_x_idx],
  1195. interp->axis[interp->arc_x_idx].ratio);
  1196. interp->centre_point.vector[interp->arc_y_idx] = pi_round(interp->centre_point.vector[interp->arc_y_idx],
  1197. interp->axis[interp->arc_y_idx].ratio);
  1198. interp->axis_length.vector[interp->arc_x_idx] = (int)pi_round(radius, interp->axis[interp->arc_x_idx].ratio);
  1199. interp->axis_length.vector[interp->arc_y_idx] = (int)pi_round(radius, interp->axis[interp->arc_y_idx].ratio);
  1200. //计算8分圆的参考位置(相对圩圆心的绝对偏移)
  1201. interp_calc_arc_refrence(interp);
  1202. interp_task_init(interp, speed, stop_speed);
  1203. }
  1204. /**
  1205. * 通过椭圆圆心与方向,开始椭圆弧的插补任务
  1206. *
  1207. * @author LXZ (032620)
  1208. *
  1209. * @param interp 插补对象
  1210. * @param start_point 开始坐标
  1211. * @param end_point 终点坐标
  1212. * @param centre_point 圆心坐标
  1213. * @param radius_x 椭圆弧X轴轴长
  1214. * @param radius_y 椭圆弧Y轴轴长
  1215. * @param dir 方向,0表示逆时针,1表示顺时针
  1216. */
  1217. void interp_begin_ellipse_task(
  1218. interp_task_t *interp,
  1219. axis_vector_t *start_point,
  1220. axis_vector_t *end_point,
  1221. axis_vector_t *centre_point,
  1222. float radius_x,
  1223. float radius_y,
  1224. int dir,
  1225. int speed,
  1226. int stop_speed) {
  1227. int ax, ay, cx, cy;
  1228. int i = 0;
  1229. //求半径
  1230. //dx = centre_point->vector[interp->arc_x_idx] -
  1231. // start_point->vector[interp->arc_x_idx];
  1232. //dy = centre_point->vector[interp->arc_y_idx] -
  1233. // start_point->vector[interp->arc_y_idx];
  1234. ax = start_point->vector[interp->arc_x_idx] -
  1235. centre_point->vector[interp->arc_x_idx];
  1236. ay = start_point->vector[interp->arc_y_idx] -
  1237. centre_point->vector[interp->arc_y_idx];
  1238. cx = end_point->vector[interp->arc_x_idx] -
  1239. centre_point->vector[interp->arc_x_idx];
  1240. cy = end_point->vector[interp->arc_y_idx] -
  1241. centre_point->vector[interp->arc_y_idx];
  1242. //初始值
  1243. interp->arc_dir = dir;
  1244. interp->centre_point = *centre_point;
  1245. interp->start_point = *start_point;
  1246. interp->end_point = *end_point;
  1247. //计算进给总量
  1248. //圆弧需要强制开启X轴与Y轴,暂时不支持Z轴同时插补,所以会关闭Z轴
  1249. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1250. if (i == interp->arc_x_idx ||
  1251. i == interp->arc_y_idx) {
  1252. interp_axis_enable(interp, i);
  1253. } else {
  1254. interp_axis_disable(interp, i);
  1255. }
  1256. }
  1257. interp->mode = INTERP_MODE_ARC;
  1258. if (start_point->vector[interp->arc_x_idx] == end_point->vector[interp->arc_x_idx] &&
  1259. start_point->vector[interp->arc_y_idx] == end_point->vector[interp->arc_y_idx]) {
  1260. interp->axis[interp->arc_x_idx].total_delta = (int)(radius_x * 4);
  1261. interp->axis[interp->arc_y_idx].total_delta = (int)(radius_y * 4);
  1262. } else {
  1263. //起点与终点所在的象限
  1264. int quadrant_start = arc_get_quadrant(interp->arc_dir,
  1265. ax,
  1266. ay);
  1267. int quadrant_end = arc_get_quadrant(interp->arc_dir,
  1268. cx,
  1269. cy);
  1270. //求角度,
  1271. float start_deg = (float)(acosf((float)ax / radius_x) * 180 / M_PI);
  1272. float end_deg = (float)(acosf((float)cx / radius_y) * 180 / M_PI);
  1273. float delta_deg = 0;
  1274. //根据象限修正角度
  1275. if (quadrant_start == 1 && start_deg == 0 && interp->arc_dir == 1) //当判断是第一象限并且是顺针同时也是角度0的时候,
  1276. // 其实它是算第四象限才对
  1277. {
  1278. start_deg = 360;
  1279. } else if (quadrant_start > 2) { //180度修正
  1280. start_deg = 360 - start_deg;
  1281. }
  1282. if ((quadrant_end == 1 && end_deg == 0 && interp->arc_dir == 0)) //当判断是第一象限并且是逆时针同时也是角度0的时候,
  1283. // 其实它是算第四象限才对
  1284. {
  1285. end_deg = 360;
  1286. } else if (quadrant_end > 2) {
  1287. end_deg = 360 - end_deg;
  1288. }
  1289. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1290. interp->axis[i].total_delta = 0;
  1291. }
  1292. //根据角度求进给量
  1293. //根据角度求出具体的总进给值
  1294. //根据角度求出具体的总进给值
  1295. if (interp->arc_dir == 0) { //逆时针
  1296. delta_deg = end_deg - start_deg;
  1297. if (delta_deg < 0) {
  1298. delta_deg += 360;
  1299. }
  1300. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  1301. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((radius_x + ax) + (radius_x + cx)));
  1302. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  1303. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((radius_x - ax) + (radius_x - cx)));
  1304. } else if (start_deg >= end_deg) { //大于半圆
  1305. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(radius_x * 4 - abs((int)(cx - ax))));
  1306. } else { //小于半圆
  1307. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  1308. }
  1309. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  1310. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((radius_y - ay) + (radius_y - cy)));
  1311. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  1312. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((radius_y + ay) + (radius_y + cy)));
  1313. } else if (delta_deg > 180) {
  1314. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * radius_y - abs((int)(cy - ay))));
  1315. } else {
  1316. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  1317. }
  1318. } else { //顺时针
  1319. delta_deg = start_deg - end_deg;
  1320. if (delta_deg < 0) {
  1321. delta_deg += 360;
  1322. }
  1323. if (start_deg <= 180 && end_deg >= 180) { //从圆左边跨象限
  1324. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((radius_x - ax) + (radius_x - cx)));
  1325. } else if (start_deg >= 180 && end_deg <= 180) { //从圆右边跨象限
  1326. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)((radius_x + ax) + (radius_x + cx)));
  1327. } else if (start_deg <= end_deg) { //大于半圆
  1328. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(radius_x * 4 - abs((int)(cx - ax))));
  1329. } else { //小于半圆
  1330. interp->axis[interp->arc_x_idx].total_delta = (int)abs((int)(cx - ax));
  1331. }
  1332. if ((start_deg <= 90 || start_deg >= 270) && (end_deg <= 270 && end_deg >= 90)) {
  1333. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((radius_y + ay) + (radius_y + cy)));
  1334. } else if ((start_deg >= 90 && start_deg <= 270) && (end_deg <= 90 || end_deg >= 270)) {
  1335. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)((radius_y - ay) + (radius_y - cy)));
  1336. } else if (delta_deg > 180) {
  1337. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(4 * radius_y - abs((int)(cy - ay))));
  1338. } else {
  1339. interp->axis[interp->arc_y_idx].total_delta = (int)abs((int)(cy - ay));
  1340. }
  1341. }
  1342. }
  1343. //进给量比例变换
  1344. interp->axis[interp->arc_x_idx].total_delta = pi_round(interp->axis[interp->arc_x_idx].total_delta,
  1345. interp->axis[interp->arc_x_idx].ratio);
  1346. interp->axis[interp->arc_y_idx].total_delta = pi_round(interp->axis[interp->arc_y_idx].total_delta,
  1347. interp->axis[interp->arc_y_idx].ratio);
  1348. interp->start_point.vector[interp->arc_x_idx] = pi_round(interp->start_point.vector[interp->arc_x_idx],
  1349. interp->axis[interp->arc_x_idx].ratio);
  1350. interp->start_point.vector[interp->arc_y_idx] = pi_round(interp->start_point.vector[interp->arc_y_idx],
  1351. interp->axis[interp->arc_y_idx].ratio);
  1352. interp->end_point.vector[interp->arc_x_idx] = pi_round(interp->end_point.vector[interp->arc_x_idx],
  1353. interp->axis[interp->arc_x_idx].ratio);
  1354. interp->end_point.vector[interp->arc_y_idx] = pi_round(interp->end_point.vector[interp->arc_y_idx],
  1355. interp->axis[interp->arc_y_idx].ratio);
  1356. interp->centre_point.vector[interp->arc_x_idx] = pi_round(interp->centre_point.vector[interp->arc_x_idx],
  1357. interp->axis[interp->arc_x_idx].ratio);
  1358. interp->centre_point.vector[interp->arc_y_idx] = pi_round(interp->centre_point.vector[interp->arc_y_idx],
  1359. interp->axis[interp->arc_y_idx].ratio);
  1360. interp->axis_length.vector[interp->arc_x_idx] = (int)pi_round(radius_x, interp->axis[interp->arc_x_idx].ratio);
  1361. interp->axis_length.vector[interp->arc_y_idx] = (int)pi_round(radius_y, interp->axis[interp->arc_y_idx].ratio);
  1362. //计算8分圆的参考位置(相对圩圆心的绝对偏移)
  1363. interp_calc_arc_refrence(interp);
  1364. interp_task_init(interp, speed, stop_speed);
  1365. }
  1366. /**
  1367. * 开始直线插补任务,
  1368. *
  1369. * @author LXZ (032620)
  1370. *
  1371. * @param interp 插补对象
  1372. * @param start_point 开始坐标
  1373. * @param end_point 终点坐标
  1374. * @param speed 速度
  1375. */
  1376. void interp_begin_line_task(
  1377. interp_task_t *interp,
  1378. axis_vector_t *start_point,
  1379. axis_vector_t *end_point,
  1380. int speed,
  1381. int stop_speed
  1382. ) {
  1383. int number = 0;
  1384. int i = 0;
  1385. int max_axis_id = 0;
  1386. int max_delta = 0;
  1387. //如果轴无效,就不进入直线插补模式
  1388. //interp->axis[0].total_delta = abs(end_point->X - start_point->X);
  1389. //interp->axis[1].total_delta = abs(end_point->Y - start_point->Y);
  1390. //interp->axis[2].total_delta = abs(end_point->Z - start_point->Z);
  1391. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1392. interp->axis[i].total_delta = (int)(abs(end_point->vector[i] - start_point->vector[i]) * interp->axis[i].ratio);
  1393. if (interp->axis[i].total_delta > 0) {
  1394. interp_axis_enable(interp, i);
  1395. } else {
  1396. interp_axis_disable(interp, i);
  1397. }
  1398. if (interp->axis[i].flg != 0) {
  1399. if (interp->axis[i].total_delta > max_delta) {
  1400. max_delta = interp->axis[i].total_delta;
  1401. max_axis_id = i;
  1402. }
  1403. number++;
  1404. }
  1405. }
  1406. if (number < 1) { //单轴不需要插补
  1407. return;
  1408. }
  1409. interp->line_idx = max_axis_id; //两个轴以上时,最大进给轴就是插补轴
  1410. //interp->axis[max_axis_id].flg += 1; //有两个轴以上的插补,最大进给的轴就是主轴
  1411. interp->mode = INTERP_MODE_LINE; //
  1412. interp->start_point = *start_point;
  1413. interp->end_point = *end_point;
  1414. //坐标比例变换
  1415. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1416. interp->start_point.vector[i] = pi_round(interp->start_point.vector[i], interp->axis[i].ratio);
  1417. interp->end_point.vector[i] = pi_round(interp->end_point.vector[i], interp->axis[i].ratio);
  1418. }
  1419. //初始化轴参数
  1420. interp_task_init(interp, speed, stop_speed);
  1421. }
  1422. /**
  1423. * 圆弧任务
  1424. *
  1425. * @author LXZ (032720)
  1426. *
  1427. * @param interp 插补对象
  1428. * @param result 插补缓冲
  1429. */
  1430. static void interp_work_arc_task(interp_task_t *interp, interp_buffer_t *result) {
  1431. interp_axis_t * axis1,*axis2;
  1432. int cur_quadrant;
  1433. int number = 0;
  1434. int dir = 0;
  1435. int count = result->count;
  1436. int rel_period = interp->ref_clock;
  1437. axis1 = &interp->axis[interp->arc_x_idx];
  1438. axis2 = &interp->axis[interp->arc_y_idx];
  1439. //进来的时候就需要进行一次减速位置初始化
  1440. if (axis1->dec_position == 0) {
  1441. axis1->dec_speed = axis1->stop_speed;
  1442. }
  1443. if (axis2->dec_position == 0) {
  1444. axis2->dec_speed = axis2->stop_speed;
  1445. }
  1446. while (count < INTERP_BUFFER_SIZE &&
  1447. (axis1->cur_delta > 0 || axis2->cur_delta > 0)) {
  1448. //判断当前速度是否能进行加速
  1449. //求当前所在象限
  1450. //进行象限判断需要以轴长为标准
  1451. if (interp->axis_length.vector[axis1->id] >= interp->axis_length.vector[axis2->id])
  1452. {
  1453. //以X轴为长轴进行判断
  1454. cur_quadrant = ellipse_get_eight_of_part_by_xaxis(interp->arc_dir,
  1455. axis1->cur_posi - interp->centre_point.vector[axis1->id],
  1456. axis2->cur_posi - interp->centre_point.vector[axis2->id],
  1457. interp->quadrant_refrence.vector[axis1->id],
  1458. interp->last_quadrant);
  1459. }
  1460. else
  1461. {
  1462. //以Y轴为长轴进行判断
  1463. cur_quadrant = ellipse_get_eight_of_part_by_yaxis(interp->arc_dir,
  1464. axis1->cur_posi - interp->centre_point.vector[axis1->id],
  1465. axis2->cur_posi - interp->centre_point.vector[axis2->id],
  1466. interp->quadrant_refrence.vector[axis2->id],
  1467. interp->last_quadrant);
  1468. }
  1469. //根据象限求出进给表
  1470. switch (cur_quadrant) { //根据8分圆来判断主轴的方向
  1471. case 1:
  1472. case 4:
  1473. case 5:
  1474. case 8:
  1475. //在这个区间里面,由于Y轴进给比Y轴大,因此,需要以Y轴为进给参考
  1476. if (
  1477. //cur_quadrant != interp->last_quadrant
  1478. (interp->last_quadrant != 1) && (interp->last_quadrant != 4) &&
  1479. (interp->last_quadrant != 5) && (interp->last_quadrant != 8)
  1480. ) { //象限变了
  1481. //主轴需要交替,因此需要根据上一次的速度值来重置判断条件
  1482. axis2->cur_speed = 0;
  1483. //查找上一次的速度值
  1484. while (axis2->cur_speed + 1 < axis2->max_speed) {
  1485. if (axis2->speed_table[axis2->cur_speed] >= axis2->last_feed) {
  1486. break;
  1487. }
  1488. axis2->cur_speed++;
  1489. }
  1490. //初始化必须的减速脉冲
  1491. axis2->dec_speed = axis2->stop_speed;
  1492. if (axis2->dec_speed <= axis2->cur_speed) { //当前速度比减速速高时,需要计算减速
  1493. axis2->dec_position = axis2->speed_table[axis2->dec_speed];
  1494. while (((axis2->dec_speed + 1) < axis2->max_speed) &&
  1495. (axis2->speed_table[axis2->dec_speed + 1] <
  1496. axis2->speed_table[axis2->cur_speed])) {
  1497. axis2->dec_speed++;
  1498. axis2->dec_position += axis2->speed_table[axis2->dec_speed];
  1499. }
  1500. } else {
  1501. axis2->dec_position = 0;
  1502. }
  1503. } else if (axis2->cur_delta - axis2->dec_position >
  1504. axis2->speed_table[axis2->cur_speed]) { //当前还允许进行该速度前进
  1505. //先判断减速
  1506. if ((axis2->dec_speed + 1 < axis2->max_speed) &&
  1507. axis2->speed_table[axis2->dec_speed + 1] < axis2->last_feed) {
  1508. if (axis2->cur_delta - axis2->dec_position >
  1509. axis2->speed_table[axis2->dec_speed + 1]) { //找出减速点
  1510. axis2->dec_speed++;
  1511. axis2->dec_position += axis2->speed_table[axis2->dec_speed];
  1512. }
  1513. } else {
  1514. //计算Y轴下次进给值
  1515. number = axis2->speed_table[axis2->cur_speed];
  1516. axis2->last_period = rel_period / number;
  1517. if (axis2->cur_delta < number) {
  1518. number = axis2->cur_delta;
  1519. }
  1520. axis2->cur_delta -= number;
  1521. //根据8分圆计算进给方向
  1522. if (interp->arc_dir == 0) { //逆时针
  1523. if (cur_quadrant == 1 ||
  1524. cur_quadrant == 2 ||
  1525. cur_quadrant == 7 ||
  1526. cur_quadrant == 8) {
  1527. dir = 1;
  1528. } else {
  1529. dir = -1;
  1530. }
  1531. } else { //顺时针
  1532. if (cur_quadrant == 1 ||
  1533. cur_quadrant == 2 ||
  1534. cur_quadrant == 7 ||
  1535. cur_quadrant == 8) {
  1536. dir = -1;
  1537. } else {
  1538. dir = 1;
  1539. }
  1540. }
  1541. result->feed[count][axis2->id] = number * dir;
  1542. axis2->cur_posi += result->feed[count][axis2->id];
  1543. result->period[count][axis2->id] = axis2->last_period;
  1544. axis2->last_feed = number;
  1545. //计算X轴在Y轴下一个位置下的进给坐标
  1546. if (cur_quadrant == 1 ||
  1547. cur_quadrant == 2 ||
  1548. cur_quadrant == 7 ||
  1549. cur_quadrant == 8) {
  1550. number = (int)eclipse_sqrt((axis2->cur_posi - interp->centre_point.vector[axis2->id]),
  1551. interp->axis_length.vector[axis2->id],
  1552. interp->axis_length.vector[axis1->id]) +
  1553. interp->centre_point.vector[axis1->id];
  1554. } else {
  1555. number = -(int)eclipse_sqrt((axis2->cur_posi - interp->centre_point.vector[axis2->id]),
  1556. interp->axis_length.vector[axis2->id],
  1557. interp->axis_length.vector[axis1->id]) +
  1558. interp->centre_point.vector[axis1->id];
  1559. }
  1560. //判断进给方向
  1561. if (number == axis1->cur_posi) {
  1562. if (interp->arc_dir == 0) { //逆时针
  1563. if (cur_quadrant == 1 ||
  1564. cur_quadrant == 2 ||
  1565. cur_quadrant == 3 ||
  1566. cur_quadrant == 4) {
  1567. dir = -1;
  1568. } else {
  1569. dir = 1;
  1570. }
  1571. } else { //顺时针
  1572. if (cur_quadrant == 1 ||
  1573. cur_quadrant == 2 ||
  1574. cur_quadrant == 3 ||
  1575. cur_quadrant == 4) {
  1576. dir = 1;
  1577. } else {
  1578. dir = -1;
  1579. }
  1580. }
  1581. number = 0;
  1582. } else if (number > axis1->cur_posi) {
  1583. number = number - axis1->cur_posi;
  1584. dir = 1;
  1585. } else {
  1586. number = axis1->cur_posi - number;
  1587. dir = -1;
  1588. }
  1589. if (number != 0 && axis1->cur_delta > 0) {
  1590. axis1->last_period = rel_period / number;
  1591. result->period[count][axis1->id] = axis1->last_period;
  1592. result->feed[count][axis1->id] = number * dir;
  1593. axis1->cur_posi += result->feed[count][axis1->id];
  1594. axis1->last_feed = number;
  1595. if (axis1->cur_delta > number) {
  1596. axis1->cur_delta -= number;
  1597. } else {
  1598. axis1->cur_delta = 0;
  1599. }
  1600. } else {
  1601. result->feed[count][axis1->id] = 0;
  1602. axis1->last_feed = 0;
  1603. axis1->last_period = PERIOD_MAX_VALUE;
  1604. }
  1605. if ((axis2->cur_delta - axis2->dec_position >
  1606. axis2->speed_table[axis2->cur_speed])
  1607. && (axis2->cur_speed + 1) < axis2->max_speed) { //满足加速条件就进行加速
  1608. axis2->cur_speed++;
  1609. }
  1610. INTERP_FEED_DEBUG(++interp->feed_count);
  1611. count++;
  1612. }
  1613. } else {
  1614. //开始执行减速运动
  1615. if (axis2->cur_delta -
  1616. (axis2->dec_position - axis2->speed_table[axis2->dec_speed]) >=
  1617. axis2->speed_table[axis2->dec_speed]) {
  1618. //如果剩余的脉冲是允许进行减速的,就继续在当前速度下进行运动来达到更快到达目的进给
  1619. //Y轴
  1620. number = axis2->speed_table[axis2->dec_speed];
  1621. axis2->last_period = rel_period / number;
  1622. if (axis2->cur_delta < number) {
  1623. number = axis2->cur_delta;
  1624. }
  1625. axis2->cur_delta -= number;
  1626. if (interp->arc_dir == 0) {
  1627. if (cur_quadrant == 3 ||
  1628. cur_quadrant == 4 ||
  1629. cur_quadrant == 5 ||
  1630. cur_quadrant == 6) {
  1631. dir = -1;
  1632. } else {
  1633. dir = 1;
  1634. }
  1635. } else {
  1636. if (cur_quadrant == 3 ||
  1637. cur_quadrant == 4 ||
  1638. cur_quadrant == 5 ||
  1639. cur_quadrant == 6) {
  1640. dir = 1;
  1641. } else {
  1642. dir = -1;
  1643. }
  1644. }
  1645. result->feed[count][axis2->id] = number * dir;
  1646. axis2->cur_posi += result->feed[count][axis2->id];
  1647. result->period[count][axis2->id] = axis2->last_period;
  1648. axis2->last_feed = number;
  1649. //计算X轴在Y轴下一个位置下的进给坐标
  1650. if (cur_quadrant == 1 ||
  1651. cur_quadrant == 2 ||
  1652. cur_quadrant == 7 ||
  1653. cur_quadrant == 8) {
  1654. number = (int)eclipse_sqrt((axis2->cur_posi - interp->centre_point.vector[axis2->id]),
  1655. interp->axis_length.vector[axis2->id],
  1656. interp->axis_length.vector[axis1->id]) +
  1657. interp->centre_point.vector[axis1->id];
  1658. } else {
  1659. number = -(int)eclipse_sqrt((axis2->cur_posi - interp->centre_point.vector[axis2->id]),
  1660. interp->axis_length.vector[axis2->id],
  1661. interp->axis_length.vector[axis1->id]) +
  1662. interp->centre_point.vector[axis1->id];
  1663. }
  1664. //判断进给方向
  1665. if (number == axis1->cur_posi) {
  1666. if (interp->arc_dir == 0) { //逆时针
  1667. if (cur_quadrant == 1 ||
  1668. cur_quadrant == 2 ||
  1669. cur_quadrant == 3 ||
  1670. cur_quadrant == 4) {
  1671. dir = -1;
  1672. } else {
  1673. dir = 1;
  1674. }
  1675. } else { //顺时针
  1676. if (cur_quadrant == 1 ||
  1677. cur_quadrant == 2 ||
  1678. cur_quadrant == 3 ||
  1679. cur_quadrant == 4) {
  1680. dir = 1;
  1681. } else {
  1682. dir = -1;
  1683. }
  1684. }
  1685. number = 0;
  1686. } else if (number > axis1->cur_posi) {
  1687. number = number - axis1->cur_posi;
  1688. dir = 1;
  1689. } else {
  1690. number = axis1->cur_posi - number;
  1691. dir = -1;
  1692. }
  1693. if (number != 0 && axis1->cur_delta > 0) {
  1694. axis1->last_period = rel_period / number;
  1695. result->period[count][axis1->id] = axis1->last_period;
  1696. result->feed[count][axis1->id] = number * dir;
  1697. axis1->cur_posi += result->feed[count][axis1->id];
  1698. axis1->last_feed = number;
  1699. if (axis1->cur_delta > number) {
  1700. axis1->cur_delta -= number;
  1701. } else {
  1702. axis1->cur_delta = 0;
  1703. }
  1704. } else {
  1705. result->feed[count][axis1->id] = 0;
  1706. axis1->last_feed = 0;
  1707. axis1->last_period = PERIOD_MAX_VALUE;
  1708. }
  1709. INTERP_FEED_DEBUG(++interp->feed_count);
  1710. count++;
  1711. } else if (axis2->dec_speed > axis2->stop_speed) {
  1712. axis2->dec_position -= axis2->speed_table[axis2->dec_speed];
  1713. axis2->dec_speed--;
  1714. } else {
  1715. axis2->dec_position = 0;
  1716. }
  1717. }
  1718. break;
  1719. case 2:
  1720. case 3:
  1721. case 6:
  1722. case 7:
  1723. //在这个区间里面,由于X轴进给比Y轴大,因此,需要以X轴为进给参考
  1724. if (
  1725. //cur_quadrant != interp->last_quadrant
  1726. (interp->last_quadrant != 2) && (interp->last_quadrant != 3) &&
  1727. (interp->last_quadrant != 6) && (interp->last_quadrant != 7)
  1728. ) { //象限变了之后,主轴需要交替,因此需要根据上一次的速度值来重置判断条件
  1729. //interp->last_quadrant = cur_quadrant;
  1730. axis1->cur_speed = 0;
  1731. //查找上一次的速度值
  1732. while ((axis1->cur_speed + 1) < axis1->max_speed) {
  1733. if (axis1->speed_table[axis1->cur_speed] >= axis1->last_feed) {
  1734. break;
  1735. }
  1736. axis1->cur_speed++;
  1737. }
  1738. //初始化必须的减速脉冲
  1739. axis1->dec_speed = axis1->stop_speed;
  1740. if (axis1->cur_speed >= axis1->dec_speed) { //当当前速度比减速速高时,需要计算减速
  1741. axis1->dec_position = axis1->speed_table[axis1->dec_speed];
  1742. while (axis1->dec_speed + 1 < axis1->max_speed &&
  1743. axis1->speed_table[axis1->dec_speed + 1] <
  1744. axis1->speed_table[axis1->cur_speed]) {
  1745. axis1->dec_speed++;
  1746. axis1->dec_position += axis1->speed_table[axis1->dec_speed];
  1747. }
  1748. } else {
  1749. axis1->dec_position = 0;
  1750. }
  1751. } else if (axis1->cur_delta - axis1->dec_position > axis1->speed_table[axis1->cur_speed]) {
  1752. if ((axis1->dec_speed + 1 < axis1->max_speed) &&
  1753. axis1->speed_table[axis1->dec_speed + 1] < axis1->last_feed) {
  1754. if (axis1->cur_delta - axis1->dec_position > axis1->speed_table[axis1->dec_speed + 1]) {
  1755. axis1->dec_speed++;
  1756. axis1->dec_position += axis1->speed_table[axis1->dec_speed];
  1757. }
  1758. } else {
  1759. //计算X轴下次进给值
  1760. number = axis1->speed_table[axis1->cur_speed];
  1761. axis1->last_period = rel_period / number;
  1762. if (axis1->cur_delta < number) {
  1763. number = axis1->cur_delta;
  1764. }
  1765. axis1->cur_delta -= number;
  1766. //根据8分圆计算进给方向
  1767. if (interp->arc_dir == 0) { //逆时针
  1768. if (cur_quadrant == 1 ||
  1769. cur_quadrant == 2 ||
  1770. cur_quadrant == 3 ||
  1771. cur_quadrant == 4) {
  1772. dir = -1;
  1773. } else {
  1774. dir = 1;
  1775. }
  1776. } else { //顺时针
  1777. if (cur_quadrant == 1 ||
  1778. cur_quadrant == 2 ||
  1779. cur_quadrant == 3 ||
  1780. cur_quadrant == 4) {
  1781. dir = 1;
  1782. } else {
  1783. dir = -1;
  1784. }
  1785. }
  1786. result->feed[count][axis1->id] = number * dir;
  1787. axis1->cur_posi += result->feed[count][axis1->id];
  1788. result->period[count][axis1->id] = axis1->last_period;
  1789. axis1->last_feed = number;
  1790. //计算Y轴在X轴下一个位置下的进给坐标
  1791. if (cur_quadrant == 1 ||
  1792. cur_quadrant == 2 ||
  1793. cur_quadrant == 3 ||
  1794. cur_quadrant == 4) {
  1795. number = (int)eclipse_sqrt((axis1->cur_posi - interp->centre_point.vector[axis1->id]),
  1796. interp->axis_length.vector[axis1->id],
  1797. interp->axis_length.vector[axis2->id]) +
  1798. interp->centre_point.vector[axis2->id];
  1799. } else {
  1800. number = -(int)eclipse_sqrt((axis1->cur_posi - interp->centre_point.vector[axis1->id]),
  1801. interp->axis_length.vector[axis1->id],
  1802. interp->axis_length.vector[axis2->id]) +
  1803. interp->centre_point.vector[axis2->id];
  1804. }
  1805. //判断进给方向
  1806. if (number == axis2->cur_posi) {
  1807. number = 0;
  1808. if (interp->arc_dir == 0) { //逆时针
  1809. if (cur_quadrant == 1 ||
  1810. cur_quadrant == 2 ||
  1811. cur_quadrant == 7 ||
  1812. cur_quadrant == 8) {
  1813. dir = 1;
  1814. } else {
  1815. dir = -1;
  1816. }
  1817. } else { //顺时针
  1818. if (cur_quadrant == 1 ||
  1819. cur_quadrant == 2 ||
  1820. cur_quadrant == 7 ||
  1821. cur_quadrant == 8) {
  1822. dir = -1;
  1823. } else {
  1824. dir = 1;
  1825. }
  1826. }
  1827. } else if (number > axis2->cur_posi) {
  1828. number = number - axis2->cur_posi;
  1829. dir = 1;
  1830. } else {
  1831. number = axis2->cur_posi - number;
  1832. dir = -1;
  1833. }
  1834. //计算轴2进给量
  1835. if (number > 0 && axis2->cur_delta > 0) {
  1836. axis2->last_period = rel_period / number;
  1837. result->period[count][axis2->id] = axis2->last_period;
  1838. result->feed[count][axis2->id] = number * dir;
  1839. axis2->cur_posi += result->feed[count][axis2->id];
  1840. axis2->last_feed = number;
  1841. if (axis2->cur_delta > number) {
  1842. axis2->cur_delta -= number;
  1843. } else {
  1844. axis2->cur_delta = 0;
  1845. }
  1846. } else {
  1847. result->feed[count][axis2->id] = 0;
  1848. axis2->last_feed = 0;
  1849. axis2->last_period = PERIOD_MAX_VALUE;
  1850. }
  1851. if ((axis1->cur_delta - axis1->dec_position >
  1852. axis1->speed_table[axis1->cur_speed]) &&
  1853. (axis1->cur_speed + 1) < axis1->max_speed) {
  1854. axis1->cur_speed++;
  1855. }
  1856. INTERP_FEED_DEBUG(++interp->feed_count);
  1857. count++;
  1858. }
  1859. } else {
  1860. //开始执行减速运动
  1861. if (axis1->cur_delta -
  1862. (axis1->dec_position - axis1->speed_table[axis1->dec_speed]) >=
  1863. axis1->speed_table[axis1->dec_speed]) {
  1864. //如果剩余的脉冲是允许进行减速的,就继续在当前速度下进行运动来达到更快到达目的进给
  1865. //计算X轴下次进给值
  1866. number = axis1->speed_table[axis1->dec_speed];
  1867. axis1->last_period = rel_period / number;
  1868. if (axis1->cur_delta < number) {
  1869. number = axis1->cur_delta;
  1870. }
  1871. axis1->cur_delta -= number;
  1872. //根据8分圆计算进给方向
  1873. if (interp->arc_dir == 0) { //逆时针
  1874. if (cur_quadrant == 1 ||
  1875. cur_quadrant == 2 ||
  1876. cur_quadrant == 3 ||
  1877. cur_quadrant == 4) {
  1878. dir = -1;
  1879. } else {
  1880. dir = 1;
  1881. }
  1882. } else { //顺时针
  1883. if (cur_quadrant == 1 ||
  1884. cur_quadrant == 2 ||
  1885. cur_quadrant == 3 ||
  1886. cur_quadrant == 4) {
  1887. dir = 1;
  1888. } else {
  1889. dir = -1;
  1890. }
  1891. }
  1892. result->feed[count][axis1->id] = number * dir;
  1893. axis1->cur_posi += result->feed[count][axis1->id];
  1894. result->period[count][axis1->id] = axis1->last_period;
  1895. axis1->last_feed = number;
  1896. //计算Y轴在X轴下一个位置下的进给坐标
  1897. if (cur_quadrant == 1 ||
  1898. cur_quadrant == 2 ||
  1899. cur_quadrant == 3 ||
  1900. cur_quadrant == 4) {
  1901. number = (int)eclipse_sqrt((axis1->cur_posi - interp->centre_point.vector[axis1->id]),
  1902. interp->axis_length.vector[axis1->id],
  1903. interp->axis_length.vector[axis2->id]) +
  1904. interp->centre_point.vector[axis2->id];
  1905. } else {
  1906. number = -(int)eclipse_sqrt((axis1->cur_posi - interp->centre_point.vector[axis1->id]),
  1907. interp->axis_length.vector[axis1->id],
  1908. interp->axis_length.vector[axis2->id]) +
  1909. interp->centre_point.vector[axis2->id];
  1910. }
  1911. //判断进给方向
  1912. if (number == axis2->cur_posi) {
  1913. number = 0;
  1914. if (interp->arc_dir == 0) { //逆时针
  1915. if (cur_quadrant == 1 ||
  1916. cur_quadrant == 2 ||
  1917. cur_quadrant == 7 ||
  1918. cur_quadrant == 8) {
  1919. dir = 1;
  1920. } else {
  1921. dir = -1;
  1922. }
  1923. } else { //顺时针
  1924. if (cur_quadrant == 1 ||
  1925. cur_quadrant == 2 ||
  1926. cur_quadrant == 7 ||
  1927. cur_quadrant == 8) {
  1928. dir = -1;
  1929. } else {
  1930. dir = 1;
  1931. }
  1932. }
  1933. } else if (number > axis2->cur_posi) {
  1934. number = number - axis2->cur_posi;
  1935. dir = 1;
  1936. } else {
  1937. number = axis2->cur_posi - number;
  1938. dir = -1;
  1939. }
  1940. //计算轴2进给量
  1941. if (number > 0 && axis2->cur_delta > 0) {
  1942. axis2->last_period = rel_period / number;
  1943. result->period[count][axis2->id] = axis2->last_period;
  1944. result->feed[count][axis2->id] = number * dir;
  1945. axis2->cur_posi += result->feed[count][axis2->id];
  1946. axis2->last_feed = number;
  1947. if (axis2->cur_delta > number) {
  1948. axis2->cur_delta -= number;
  1949. } else {
  1950. axis2->cur_delta = 0;
  1951. }
  1952. } else {
  1953. result->feed[count][axis2->id] = 0;
  1954. axis2->last_feed = 0;
  1955. axis2->last_period = PERIOD_MAX_VALUE;
  1956. }
  1957. INTERP_FEED_DEBUG(++interp->feed_count);
  1958. count++;
  1959. } else if (axis1->dec_speed > axis1->stop_speed) {
  1960. axis1->dec_position -= axis1->speed_table[axis1->dec_speed];
  1961. axis1->dec_speed--;
  1962. } else {
  1963. axis1->dec_position = 0;
  1964. }
  1965. }
  1966. break;
  1967. }
  1968. interp->last_quadrant = cur_quadrant;
  1969. if (count > 0) {
  1970. //当过程中双方进给都为0,说明运算其实结束了,只是因为计算差异会导致其中一个轴存在无法计算的余数
  1971. if (result->feed[count - 1][axis2->id] == 0 && result->feed[count - 1][axis1->id] == 0) {
  1972. count--;
  1973. axis1->cur_delta = 0;
  1974. axis2->cur_delta = 0;
  1975. break;
  1976. }
  1977. }
  1978. }
  1979. if (axis1->cur_delta == 0 && axis2->cur_delta == 0) { //插补运算完成
  1980. int speed = 0;
  1981. int i = 0;
  1982. interp->mode = INTERP_MODE_NONE;
  1983. //需要计算一次完成后的每个轴当前速度
  1984. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  1985. axis2 = &interp->axis[i];
  1986. speed = 0;
  1987. while (axis2->speed_table[speed] < axis2->last_feed) {
  1988. speed++;
  1989. }
  1990. axis2->cur_speed = speed;
  1991. }
  1992. }
  1993. //result->used = 0;
  1994. result->count = count;
  1995. }
  1996. /**
  1997. * 直线插补
  1998. *
  1999. * @author LXZ (032720)
  2000. *
  2001. * @param interp 插补对象
  2002. */
  2003. static void interp_work_line_task(interp_task_t *interp, interp_buffer_t *result) {
  2004. interp_axis_t * axis1,*axis2;
  2005. int number = 0;
  2006. float ratio = 0;
  2007. int count = result->count;
  2008. int i = 0;
  2009. int speed = 0;
  2010. int rel_period = interp->ref_clock;
  2011. axis1 = &interp->axis[interp->line_idx];
  2012. if (axis1->dec_position == 0) {
  2013. axis1->dec_speed = axis1->stop_speed;
  2014. if (axis1->cur_speed >= axis1->dec_speed) {
  2015. axis1->dec_position = axis1->speed_table[axis1->dec_speed];
  2016. }
  2017. }
  2018. while (count < INTERP_BUFFER_SIZE && (axis1->cur_delta > 0)) {
  2019. //判断当前速度是否能进行加速
  2020. if (axis1->cur_delta - axis1->dec_position > axis1->speed_table[axis1->cur_speed]) {
  2021. //计算减速距离
  2022. if (((axis1->dec_speed + 1) < axis1->max_speed) &&
  2023. (axis1->speed_table[axis1->dec_speed + 1] < axis1->last_feed)) { //先计算减速脉冲
  2024. if (axis1->cur_delta - axis1->dec_position >
  2025. axis1->speed_table[axis1->dec_speed + 1]) { //如果允许增加减速
  2026. axis1->dec_speed++;
  2027. axis1->dec_position += axis1->speed_table[axis1->dec_speed];
  2028. }
  2029. } else {
  2030. //获取加速度寄存器值
  2031. number = axis1->speed_table[axis1->cur_speed];
  2032. axis1->last_period = rel_period / number;
  2033. axis1->cur_delta -= number;
  2034. axis1->last_feed = number;
  2035. if (axis1->start_posi > axis1->target_posi) {
  2036. axis1->cur_posi -= number;
  2037. result->feed[count][axis1->id] = -number;
  2038. //计算总进度比例
  2039. ratio = (float)(axis1->start_posi - axis1->cur_posi) / axis1->total_delta;
  2040. } else {
  2041. axis1->cur_posi += number;
  2042. result->feed[count][axis1->id] = number;
  2043. //计算总进度比例
  2044. ratio = (float)(axis1->cur_posi - axis1->start_posi) / axis1->total_delta;
  2045. }
  2046. result->period[count][axis1->id] = axis1->last_period;
  2047. //计算总进度比例
  2048. //计算次轴的跟随进给
  2049. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2050. if (i != interp->line_idx) { //非主轴对象
  2051. axis2 = &interp->axis[i];
  2052. number = 0;
  2053. if (axis2->flg != 0) { //选中为插补轴了
  2054. if (axis2->total_delta == axis1->total_delta) { //1比1时不需要计算
  2055. number = axis1->speed_table[axis1->cur_speed];
  2056. } else {
  2057. if (axis2->start_posi > axis2->target_posi) {
  2058. number = (int)(axis2->total_delta * ratio) - (axis2->start_posi - axis2->cur_posi);
  2059. } else {
  2060. number = (int)(axis2->total_delta * ratio) - (axis2->cur_posi - axis2->start_posi);
  2061. }
  2062. }
  2063. }
  2064. if (number > 0) {
  2065. axis2->last_period = rel_period / number;
  2066. if (axis2->start_posi > axis2->target_posi) {
  2067. axis2->cur_posi -= number;
  2068. result->feed[count][axis2->id] = -number;
  2069. } else {
  2070. axis2->cur_posi += number;
  2071. result->feed[count][axis2->id] = number;
  2072. }
  2073. axis2->cur_delta -= number;
  2074. result->period[count][axis2->id] = axis2->last_period;
  2075. axis2->last_feed = number;
  2076. } else {
  2077. axis2->last_period = PERIOD_MAX_VALUE;
  2078. result->feed[count][axis2->id] = 0;
  2079. axis2->last_feed = 0;
  2080. result->period[count][axis2->id] = PERIOD_MAX_VALUE;
  2081. }
  2082. }
  2083. }
  2084. //如果有条件加速就进行加速
  2085. if (axis1->cur_delta - axis1->dec_position >
  2086. axis1->speed_table[axis1->cur_speed] &&
  2087. (axis1->cur_speed + 1) < axis1->max_speed) axis1->cur_speed++;
  2088. INTERP_FEED_DEBUG(++interp->feed_count);
  2089. count++;
  2090. }
  2091. } else {
  2092. //开始执行减速运动
  2093. if (axis1->cur_delta -
  2094. (axis1->dec_position - axis1->speed_table[axis1->dec_speed]) >=
  2095. axis1->speed_table[axis1->dec_speed]) {
  2096. number = axis1->speed_table[axis1->dec_speed];
  2097. axis1->last_period = rel_period / number;
  2098. axis1->cur_delta -= number;
  2099. axis1->last_feed = number;
  2100. if (axis1->start_posi > axis1->target_posi) {
  2101. axis1->cur_posi -= number;
  2102. result->feed[count][axis1->id] = -number;
  2103. //计算总进度比例
  2104. ratio = (float)(axis1->start_posi - axis1->cur_posi) / axis1->total_delta;
  2105. } else {
  2106. axis1->cur_posi += number;
  2107. result->feed[count][axis1->id] = number;
  2108. //计算总进度比例
  2109. ratio = (float)(axis1->cur_posi - axis1->start_posi) / axis1->total_delta;
  2110. }
  2111. result->period[count][axis1->id] = axis1->last_period;
  2112. //计算次轴的跟随进给
  2113. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2114. if (i != interp->line_idx) { //非主轴对象
  2115. axis2 = &interp->axis[i];
  2116. number = 0;
  2117. if (axis2->flg != 0) { //选中为插补轴了
  2118. if (axis2->total_delta == axis1->total_delta) { //1比1时不需要计算
  2119. number = axis1->speed_table[axis1->dec_speed];
  2120. } else {
  2121. if (axis2->start_posi > axis2->target_posi) {
  2122. number = (int)(axis2->total_delta * ratio) - (axis2->start_posi - axis2->cur_posi);
  2123. } else {
  2124. number = (int)(axis2->total_delta * ratio) - (axis2->cur_posi - axis2->start_posi);
  2125. }
  2126. }
  2127. }
  2128. if (number > 0) {
  2129. axis2->last_period = rel_period / number;
  2130. if (axis2->start_posi > axis2->target_posi) {
  2131. axis2->cur_posi -= number;
  2132. result->feed[count][axis2->id] = -number;
  2133. } else {
  2134. axis2->cur_posi += number;
  2135. result->feed[count][axis2->id] = number;
  2136. }
  2137. axis2->cur_delta -= number;
  2138. result->period[count][axis2->id] = axis2->last_period;
  2139. axis2->last_feed = number;
  2140. } else {
  2141. axis2->last_period = PERIOD_MAX_VALUE;
  2142. result->feed[count][axis2->id] = 0;
  2143. axis2->last_feed = 0;
  2144. result->period[count][axis2->id] = PERIOD_MAX_VALUE;
  2145. }
  2146. }
  2147. }
  2148. INTERP_FEED_DEBUG(++interp->feed_count);
  2149. count++;
  2150. } else if (axis1->dec_speed > 0) {
  2151. axis1->dec_position -= axis1->speed_table[axis1->dec_speed];
  2152. axis1->dec_speed--;
  2153. } else {
  2154. axis1->dec_position = 0;
  2155. }
  2156. }
  2157. }
  2158. if (axis1->cur_delta == 0) {
  2159. interp->mode = INTERP_MODE_NONE;
  2160. axis1->cur_speed = axis1->dec_speed;
  2161. //需要计算一次完成后的每个轴当前速度
  2162. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2163. if (i != interp->line_idx) { //非主轴对象
  2164. axis2 = &interp->axis[i];
  2165. speed = 0;
  2166. while (axis2->speed_table[speed] < axis2->last_feed) {
  2167. speed++;
  2168. }
  2169. axis2->cur_speed = speed;
  2170. }
  2171. }
  2172. }
  2173. result->count = count;
  2174. //result->used = 0;
  2175. }
  2176. /**
  2177. * 插补减速停止
  2178. *
  2179. * @author LXZ (033120)
  2180. *
  2181. * @param interp 插补对象
  2182. */
  2183. void interp_task_stop(interp_task_t *interp) {
  2184. interp->stop_flg = 1; //打开了停止位,周期进给会停止
  2185. }
  2186. /**
  2187. * 执行插补任务
  2188. *
  2189. * @author LXZ (032620)
  2190. *
  2191. * @param interp 插补对象
  2192. */
  2193. void interp_task_run(interp_task_t *interp) {
  2194. interp_buffer_t *buffer = (void *)0;
  2195. int i = 0;
  2196. if (!interp_is_fin(interp) && interp->stop_flg == 0) { //有任务并且没有打开停止位时,开始进给
  2197. //查找一个空的可用缓冲
  2198. for (i = 0; i < INTERP_WORK_BUFFER_NUMBER; i++) {
  2199. if (interp->work_buffer[i].count <= interp->work_buffer[i].used) {
  2200. buffer = &interp->work_buffer[i];
  2201. memset(buffer, 0, sizeof(interp_buffer_t));
  2202. interp->work_buffer[i].used = INTERP_BUFFER_SIZE + 1;
  2203. interp->work_buffer[i].count = 0;
  2204. break;
  2205. }
  2206. }
  2207. if (buffer != (void *)0) { //取得有效插补缓冲
  2208. do {
  2209. if (interp->mode == INTERP_MODE_ARC) { //圆弧插补
  2210. interp_work_arc_task(interp, buffer);
  2211. } else if (interp->mode == INTERP_MODE_LINE) { //直线插补
  2212. interp_work_line_task(interp, buffer);
  2213. } else if (interp->path_count > interp->cur_path_index) { //查找下一个路径
  2214. interp_path_t *path = &interp->paths[interp->cur_path_index];
  2215. int i = 0;
  2216. axis_vector_t sp = { 0 };
  2217. axis_vector_t ep = { 0 };
  2218. axis_vector_t cp = { 0 };
  2219. #if 0
  2220. if (interp->cur_path_index > 0) {
  2221. interp_path_t *path0 = &interp->paths[interp->cur_path_index - 1];
  2222. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2223. //修正目标位置,由于上次运算在计算圆弧的时候会引入误差,在运算完后需要修正
  2224. ep.vector[i] = path->end_point.vector[i] - path0->end_point.vector[i] +
  2225. interp->axis[i].cur_posi - interp->axis[i].target_posi;
  2226. cp.vector[i] = path->centre_point.vector[i] - path0->end_point.vector[i] +
  2227. interp->axis[i].cur_posi - interp->axis[i].target_posi;
  2228. }
  2229. } else {
  2230. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2231. ep.vector[i] = path->end_point.vector[i];
  2232. cp.vector[i] = path->centre_point.vector[i];
  2233. }
  2234. }
  2235. #else
  2236. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2237. ep.vector[i] = path->end_point.vector[i];
  2238. cp.vector[i] = path->centre_point.vector[i];
  2239. }
  2240. #endif
  2241. if (path->work_type == INTERP_MODE_LINE) { //直线插补
  2242. //开始直线任务
  2243. interp_begin_line_task(interp, &sp, &ep, path->target_speed, path->stop_speed);
  2244. } else if (path->work_type == INTERP_MODE_ARC) { //圆弧插补
  2245. //设置选用轴
  2246. interp_set_arc_axis(interp, path->arc_x_id, path->arc_y_id);
  2247. //开始圆弧任务
  2248. interp_begin_arc_task(interp, &sp, &ep, &cp,
  2249. path->wor_dir, path->target_speed, path->stop_speed);
  2250. } else if (path->work_type == INTERP_MODE_ELLIPSE) {
  2251. //设置选用轴
  2252. interp_set_arc_axis(interp, path->arc_x_id, path->arc_y_id);
  2253. //开始椭圆弧任务
  2254. interp_begin_ellipse_task(interp, &sp, &ep, &cp,
  2255. path->radius_x, path->radius_y,
  2256. path->wor_dir, path->target_speed, path->stop_speed);
  2257. }
  2258. interp->cur_path_index++;
  2259. } else {
  2260. break;
  2261. }
  2262. } while (buffer->count < INTERP_BUFFER_SIZE);
  2263. if (buffer->count > 0) {
  2264. buffer->used = 0; //使能该缓冲输出
  2265. }
  2266. }
  2267. }
  2268. }
  2269. /**
  2270. * 插补周期运行函数,需要定时调用
  2271. *
  2272. * @author LXZ (032620)
  2273. *
  2274. * @param interp 插补对象
  2275. */
  2276. void interp_task_period(interp_task_t *interp) {
  2277. int i = 0;
  2278. if (interp->stop_flg == 0) {
  2279. interp_buffer_t *buffer = &interp->work_buffer[interp->cur_buffer_index];
  2280. if (buffer->used < buffer->count) {
  2281. for (i = 0; i < INTERP_AXIS_NUMBER; i++) {
  2282. if (buffer->feed[buffer->used][i] != 0) { //插补数据有效时输出到物理轴
  2283. interp->axis[i].real_posi += buffer->feed[buffer->used][i]; //计算新的真实单位位置
  2284. interp->axis[i].cur_feed = abs(buffer->feed[buffer->used][i]);
  2285. interp_axis_period(&interp->axis[i], buffer->feed[buffer->used][i],
  2286. INTERP_REAL_PERIOD(buffer->period[buffer->used][i]));
  2287. } else {
  2288. interp->axis[i].cur_feed = 0;
  2289. }
  2290. }
  2291. INTERP_PERIOD_REPORT(buffer);
  2292. buffer->used++;
  2293. if (buffer->used >= buffer->count) { //插补缓冲完成了
  2294. buffer->count = 0;
  2295. buffer->used = 0;
  2296. if (++interp->cur_buffer_index >= INTERP_WORK_BUFFER_NUMBER) { //切换缓冲
  2297. interp->cur_buffer_index = 0;
  2298. }
  2299. }
  2300. }
  2301. }
  2302. }
  2303. /**
  2304. * 返回插补动作是否完成
  2305. *
  2306. * @author LXZ (032620)
  2307. *
  2308. * @param interp 插补对象
  2309. *
  2310. * @return int 返回0 表示未完成,返回1表示完成
  2311. */
  2312. int interp_is_fin(interp_task_t *interp) {
  2313. int i = 0;
  2314. if (interp->path_count > 0 && interp->cur_path_index < interp->path_count) //路径缓冲池没完
  2315. return 0;
  2316. for (i = 0; i < INTERP_AXIS_NUMBER; i++) { //轴还在运行
  2317. if (interp_axis_is_runnging(&interp->axis[i])) {
  2318. return 0;
  2319. }
  2320. }
  2321. for (i = 0; i < INTERP_DEC_BUFFER_NUMBER; i++) { //插补缓冲还没执行完
  2322. if (interp->work_buffer[i].count > interp->work_buffer[i].used) {
  2323. return 0;
  2324. }
  2325. }
  2326. //当前运算任务也已经完成
  2327. return interp->mode == INTERP_MODE_NONE;
  2328. }